Midterm Exam

1. Consider the following 2X2 table with fixed row and column marginals:

12	3	15
3	7	10
15	10	25

- (a) What is the range of n_{11} ?
- (b) Consider the exact test of H_o : $\theta = 2$ vs. H_A : $\theta > 2$ ($\alpha = .05$). Find the rejection region and compute a p-value for this test.
- 2. Use the function **pexact** to help answer the following questions about unconditional tests for the 2x2 table below.

3	7	10
8	2	10
11	9	20

Assume that the row marginals, n_{1+} , n_{2+} are fixed, so that n_{i1} has a binomial distribution with parameters n_{i+} and π_i .

- (a) Which tables lie in the pooled Z-test rejection region for the hypothesis $H_o: \pi_1 = \pi_2$ vs. $H_a: \pi_1 < \pi_2$? Answer this by entering an arbitrary value for π when using pexact and then examining the output list.
- (b) The following set of commands can generate a vector of p-values for a range of π :

p=rep(0,100)
pv=rep(0,100)
for (i in 1:100) {
 p[i]=i/101
 pv[i]=pexact(p[i],3,7,8,2)\$pval
}

Plot the p-value for the test as a function of π , $0 \le \pi \le 1$. What is its sup?

- (c) Now construct a Clopper-Pearson 99.9% CI for π (You can use Berger's web page for this). Would the p-value computed over the Clopper-Pearson CI range be any different from the p-value computed over the entire range of π ? Why or why not?
- 3. The table below was compiled for a middle school from the 2003 English/Language Arts PACT exam.

	Grade		
	6	7	8
Below Basic	60	62	76
Basic	87	134	140
Proficient	87	102	100
Advanced	42	24	21

- (a) Compute the likelihood ratio test statistic for a test of independence
- (b) Partition the likelihood ratio test statistic into 6 indepedent 1 df components. What conclusions can you draw from these components?