Midterm Exam

- 1. Mid P-value
 - (a) Show that the lower confidence bound π_L for the binomial parameter π using the mid-P-value method must solve the following equation (I've left the 1/2 term in the equation to help with the derivation):

$$\alpha/2 = \frac{1}{2}F\left(\frac{\pi_L(n-y)}{(1-\pi_L)(y+1)}; 2(y+1), 2(n-y)\right) + \frac{1}{2}F\left(\frac{\pi_L(n-y+1)}{(1-\pi_L)y}; 2y, 2(n-y+1)\right)$$

- (b) Find the solution for this equation when y = 3, n = 25, and $\alpha = .05$.
- 2. Clopper-Pearson confidence intervals.
 - (a) Modify code for the Clopper-Pearson confidence interval so that it generates confidence intervals for input values of y and n (rather than y and n = 25 as we used in class and HW 1).
 - (b) Compute 95% confidence intervals for y = 1 as n varies from 2 to 100. Plot the lower and upper confidence bounds as a function of n.
 - (c) Plot the actual coverage probability for 95% Clopper-Pearson confidence intervals for $\pi = .05$ as n varies from 2 to 100. Comment.
 - (d) Write code to compute actual coverage probabilities for 95% Clopper-Pearson confidence intervals as n varies from 5 to 100 in increments of 5, and π varies from .01 to .5 in increments of .01. Display results using contour plots, or wireframe plots or the 3-dimensional method of your choice (the lattice package has a variety of 3-dimensional plotting functions). It may be useful to subtract actual coverage proportions from .95 and instead plot these deviations from the target value. Comment.
- 3. Consider the following 2X2 table (with row and column marginals included):

10	7	17
11	2	13
21	9	30

- (a) For Fisher's Exact test of independence, what is the range of n_{11} ? Using SAS, what is the p-value for Fisher's Exact test for H_A : $\theta < 1$?
- (b) Compute Pearson's chi-squared test statistic for independence. Find the exact p-value for this test.
- 4. Use the same table as in Problem 4 to answer the following questions.
 - (a) Consider a test of $H_o: \theta = 2$ vs. $H_A: \theta < 2$ using the method in 3.6.1 Write R code to find a p-value for this test.
 - (b) Using two one-sided tests, each with $\alpha = .025$, write R code to find a 95% confidence interval for θ .