STAT 515 Lec 03 slides
 Conditional probability, independence, Bayes' rule

Karl B. Gregory
University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture, definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.

$$
\begin{aligned}
& A \cap S=A \\
& P(S)=1
\end{aligned}
$$

$$
P(A)=\frac{P(A \cap S)}{P(S)}
$$

$$
P\left(A \left\lvert\, \begin{array}{c}
B \\
4
\end{array}\right.\right)=\frac{P(A \cap B)}{P(B)}
$$

If we know that B herpount, the mece trat B is the Whole suaple spacu.

This is the probability that the event A occurs given that B occurs.
Exercise: Roll two dice. Find
(1) P (doubles)
(2) $P($ sum $\geq 10)$
(3) $P($ doubles \mid sum $\geq 10)$
(- $P($ sum $\geq 10 \mid$ doubles $)$
(1) $P($ doubles $)=\frac{6}{36}=\frac{1}{6}$
(2) $P($ sum $\geqslant 10)=\frac{1}{6}$

$$
\mathcal{S}=\left\{\begin{array}{llllll}
(1,1) & (1,2) & (1,3) & (1,4) & (1,5) & (1,6) \\
(2,1) & (2,2) & (2,3) & (2,4) & (2,5) & (2,6) \\
(3,1) & (3,2) & (3,3) & (3,4) & (3,5) & (3,6) \\
(4,1) & (4,2) & (4,3) & (4,4) & (4,5) & (4,6) \\
(5,1) & (5,2) & (5,3) & (5,4) & (5,5) & (5,6) \\
(6,1) & (6,2) & (6,3) & (6,4) & (6,5) & (6,6)
\end{array}\right\}
$$

(3)

$$
\begin{aligned}
P(\text { Doubles } \mid \text { sum } \geqslant 10) & =\frac{P(\text { Doubles } \cap \text { sum } \geqslant 10)}{P(\text { sum } \geqslant 10)} \\
& =\frac{2 / 36}{1 / 6}=\frac{6}{18}=\frac{1}{3} .
\end{aligned}
$$

Exercise: From STAT 515 fa 2019:

- 40 students in class
- 10 students got an 'A' on final exam
- 12 students got an 'A' hw average
- 23 students did not get an ' A ' on the final or an ' A ' hw average.

If a student is drawn at random from the class, give
(1) $P($ ' A ' on final $)$
(2) P (' A ' on final | ' A ' hw average)
(3) P ('A' on final | less than ' A ' hw average)
(1) P (less than ' A ' on final | less than ' A ' hw average)
(0) P (' A ' on final \cap ' A ' hw average)

(1) $P(E)=\frac{10}{40}=0.25$
(2) $P(E \mid H)=\frac{P(E \cap H)}{P(H)}=\frac{5 / 40}{12 / 40}=\frac{5}{12}=0.417$
(3) $P\left(E \mid H^{c}\right)=\frac{P\left(E \cap H^{c}\right)}{P\left(H^{c}\right)}=\frac{5 / 40}{28 / 40}=\frac{5}{28}=0.179$
(4) $P\left(E^{\prime} \mid H^{c}\right)=\frac{23}{28}=\frac{P\left(E^{c} \cap H^{c}\right)}{P\left(H^{c}\right)}=\frac{23 / 40}{28 / 40}=\frac{23}{28}=0.821$
(5) $P(E \cap H)=\frac{5}{40}$.

$$
\begin{aligned}
& P(A \mid B)=\frac{P(A \cap B)}{P(B)} \Leftrightarrow P(A \cap B)=P(A \mid B) P(B) \\
& P(B \mid A)=\frac{P(A \cap B)}{P(A)} \Leftrightarrow P(A \cap B)=P(B \mid A) P(A)
\end{aligned}
$$

Intersection prob. as conditional times unconditional

For any two events A and B,

$$
P(A \cap B)=P(A \mid B) P(B) \quad \text { or } \quad P(A \cap B)=P(B \mid A) P(A)
$$

Exercise: Suppose that on a safari, the probabilities of seeing a giraffe (G), a wildebeest (W), and a crocodile (C) are as follows:

$$
\begin{aligned}
& P(W)=0.40 \\
& P(C)=0.60 \\
& P(G)=0.20 \\
& P(C \mid W)=0.775 \\
& P(C \mid G)=0.65 \\
& P(G \cap W)=0.06 \quad \checkmark \\
& P(G \cap W \cap C)=0.01
\end{aligned}
$$

Fill out a Venn diagram with the probabilities of all possibilities.

If A and B an matrilly enduives, can thes be independeat? Acsum $P(A)>0, P(B)>0$.
A and B ane mutely calluin if $A \cap B=\phi$. Inch mans A and B cont heron of the som time. $\Rightarrow P(A \cap B)=0$
Independence
Two events A and B are called independent if

$$
P(A \cap B)=P(A) P(B)
$$

Equivalent definitions of independence
The following statements are equivalent:

- $P(A \cap B)=P(A) P(B)$
- $P(A)=P(A \mid B)$

$$
\text { - } P(B)=P(B \mid A)
$$

$$
\begin{aligned}
& \text { re equivalent: } \\
& P(A)=P(A \mid B)=\frac{P(A \cap B)}{P(B)} \Leftrightarrow P(A) P(B)=P(A \cap B) . \\
& P(B)=P(B \mid A)=\frac{P(A \cap B)}{P(A)} \Leftrightarrow P(A) P(B)=P(A \cap B) .
\end{aligned}
$$

Also: If A, B independent, so are the pairs of events A, B^{c} and A^{c}, B and A^{c}, B^{c}.

Exercise: Flip a coin twice and let

$$
\begin{aligned}
& H_{1}=\text { heads on first flip } \\
& H_{2}=\text { heads on second flip }
\end{aligned}
$$

Find $P\left(H_{1} \cap H_{2}\right)$ assuming that the flips are independent.

$$
P\left(H_{1} \cap H_{2}\right)=P\left(H_{1}\right) P\left(H_{2}\right)=\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{4} .
$$

Exercise: Let

- $A=$ flat tire
- $B=$ forgot spare tube

Suppose that $P(A)=0.02$ and $P(B)=0.10$ and $P(A \cap B)=0.002$.
Are the events independent?
chs

$$
\begin{aligned}
& P(A) P(B) \stackrel{?}{=} P(A \cap B) \\
& (0.02)(0.10)=0.002 .
\end{aligned}
$$

So you, indracatat.

Boxpl.t

$R_{1} R_{2} \cdots \quad R_{10}$

$$
P(A \cap B)=P(A) P(B)
$$

Exercise: Send survey to 10 people. Let $R_{i}=$ person i responds, $i=1, \ldots, 10$. Assume independence with probability of response 0.20 . Give
(1) P (Everyone completes survey)
(2) $P($ No one completes survey $)$
(3) P (At least one person completes the survey)
(1) $P\left(R_{1} \cap R_{2} \cap R_{3} \cap \ldots \cap R_{10}\right)=P\left(R_{1}\right) P\left(R_{2}\right) \cdot \ldots \cdot P\left(R_{10}\right)$

$$
=(0.20)^{10}=1.024 \times 10^{-7}
$$

(2) $P\left(R_{1}^{c} \cap R_{2}^{c} \cap \cdots \cap R_{10}^{c}\right)=P\left(R_{1}^{c}\right) \cdot P\left(R_{2}^{c}\right) \cdot \ldots \cdot P\left(R_{10}^{c}\right)=(0.8)^{10}=0.107$
(3)

$$
\begin{aligned}
P\left(R_{1} \cup R_{2} \cup \cdots \cup R_{10}\right) & =1-P\left(\left(R_{1} \cup \ldots \cup R_{10}\right)^{c}\right) \\
& =1-P\left(R_{1} \cap \cdots \cap R_{10}\right) \\
& =1-(8)^{10}=1-0.107=0.893 .
\end{aligned}
$$

Exercise: From STAT 515 fa 2019:

- 40 students in class
- 10 students got an ' A ' on final exam
- 12 students got an 'A' hw average
- 23 students did not get an ' A ' on the final or an ' A ' how average.

If a student is drawn at random from the class, are the events ' A ' on final and ' A ' how average independent?

$$
\begin{aligned}
& H \\
& P(E \cap H) \stackrel{?}{=} P(E) P(H) \quad P(H) ? P(H \mid E) \\
& P(E) ? P(E \mid H) \lessdot \quad \text { chat tho }
\end{aligned}
$$

(1) $P(E)=\frac{10}{40}=0.25$ not eq. 1
(2) $P(E \mid H)=\frac{P(E \cap H)}{P(H)}=\frac{5 / 40}{12 / 40}=\frac{5}{12}=0.417$

So E and H are mot modependent.

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

$$
\begin{aligned}
P(A) & =P\left(\left(A \cap B^{C}\right) \cup(A \cap B)\right) \\
& =P\left(A \cap B^{C}\right)+P(A \cap B) \\
& =P\left(A \mid B^{C}\right) P\left(B^{C}\right)+P(A \mid B) P(B)
\end{aligned}
$$

$$
\text { If } A \cap B=\varnothing
$$

Exercise: Suppose 20\% of a population has an infection. Suppose a test is positive with probability 0.70 when the infection is present and negative with probability 0.95 when the infection is absent.

$$
\begin{array}{llr}
I=\text { infusion } & P(I)=0.20 \\
+=\text { position tat } & P(+\mid I)=0.70 \\
-=\text { negation tut } & P\left(-\mid I^{c}\right)=0.95
\end{array}
$$

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A \mid B) P(B)+\underbrace{P\left(A \mid B^{c}\right) P\left(B^{c}\right)}}
$$

$$
P\left(A^{C} \mid B\right)=1-P(A \mid B)
$$

$$
\begin{aligned}
& \text { Cumplemathtion works } \\
& \text { fir conditrail probe. }
\end{aligned}
$$

complemandion con pros.
(1)

$$
\begin{aligned}
P(I \mid+) & =\frac{P(+\mid I) P(I)}{P(+I I) P(I)+\underbrace{P\left(+I I^{c}\right)}_{1-P\left(-1 I^{c}\right)} \underbrace{P\left(I^{c}\right)}} \\
& =\frac{(0.70)(0.20)}{(0.70)(0.20)+(1-0.95)(1-0.20)} \\
& =0.78
\end{aligned}
$$

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A \mid B) P(B)+\underbrace{P\left(A \mid B^{c}\right) P\left(B^{c}\right)}}
$$

(2)

$$
\begin{aligned}
P\left(I^{c} \mid-\right) & =\frac{P\left(-\mid I^{c}\right) P\left(I^{c}\right)}{P\left(-\mid I^{c}\right) P\left(I^{c}\right)+\underbrace{P(-I I)}_{=1-P(+1 I)} \frac{P(I)}{}} \\
& =\frac{(0.95)(1-0.20)}{(0.95)(1-0.20)+(1-0.70)(0.20)} \\
& =\frac{(.95)(0.80)}{(.75)(0.8)+(0.30)(0.20)} \\
& =0.927 .
\end{aligned}
$$

Sensitivity: $P(+\mid I)$
$s_{\text {pecificity }}: P\left(-\mid I^{c}\right)$

Exercise: Suppose 20\% of a population has an infection. Suppose a test is positive with probability 0.70 when the infection is present and negative with probability 0.95 when the infection is absent.

For a randomly selected person from the population, find:
(1) P (infection | positive test)
(2) $P($ no infection | negative test)
(3) If 100 people are tested, among whom 20 have the infection, how many do you expect of

- False positives
- True positives
- False negatives
- True negatives
(0) Suppose a person is tested twice, with test outcomes independent. Find
- P (infection | two positive tests)
- P (infection | two negative tests)

Leaf plot under Sens $\mathbf{= 0 . 7}$ and Spec $=0.95$

Bayes' Rule

For an event A and a set of mutually exclusive events B_{1}, \ldots, B_{K} such that $P\left(B_{1}\right)+\cdots+P\left(B_{K}\right)=1$, we have

$$
\overline{\mathcal{B}_{1} \cup \cdots \cup \mathbb{B}_{k}=\mathbf{S}} \quad P\left(B_{k} \mid A\right)=\frac{P\left(A \mid B_{k}\right) P\left(B_{k}\right)}{P\left(A \mid B_{1}\right) P\left(B_{1}\right)+\cdots+P\left(A \mid B_{K}\right) P\left(B_{K}\right)} .
$$

Show why...
Let $K=2$ with $B_{1}=B$ and $B_{2}=B^{c}$ to get simplified version.

Events $B_{1}, B_{2}, \ldots B_{K}$ are a partition of S.

$$
\left.\begin{array}{l}
B_{1} \cup B_{2} \cup \cdots \cup B_{K}=S \\
B_{j} \cap B_{k}=\varnothing \quad \text { fo } \quad .11 \quad j \neq k
\end{array}\right\}
$$

S

$$
\begin{aligned}
P\left(B_{2} \mid A\right) & =\frac{P\left(A \cap B_{2}\right)}{P(A)} \\
& =\frac{P\left(A \mid B_{2}\right) P\left(B_{2}\right)}{P\left(A \cap B_{1}\right)+\cdots+P\left(A \cap B_{K}\right)} \\
& =\frac{P\left(A \mid B_{2}\right) P\left(B_{2}\right)}{\left.P\left(A \mid B_{1}\right) P \mid B_{1}\right)+\ldots+P\left(A \mid B_{k}\right) P\left(B_{k}\right)}
\end{aligned}
$$

Exercise: Roll a die and draw one bill from a bag as follows:

Roll \odot, \odot, \odot		$3 \$ 5$ bills and $1 \$ 20$ bill
Roll B_{3},	m	2
oll 1 :	aw from b	$1 \$ 5$ bill and $3 \$ 20$ bills

(2) What is the probability that you get $\$ 20$?

Given that you get $\$ 20$, what is the probability that you drew from bag 1 ?
(3) If you did this 1000 times:

- How many times would you expect to get $\$ 20$?
- Of the times you get $\$ 20$, on how many do you expect it to be from bag 1 ?
$p(\$ 20)=$

Roll $\odot, \odot, \odot \longrightarrow$ draw from bag 1: $3 \$ 5$ bills and $1 \$ 20$ bill
Roll $: \because$, $\because \quad$ draw from bag 2: $2 \$ 5$ bills and $2 \$ 20$ bills
Roll \mathfrak{B} : draw from bag 3: $1 \$ 5$ bill and $3 \$ 20$ bills

Draw $\$ 20$ or $\$ 5$
$B_{1}=$ draw fir bog 1 (roll $1,2,3$)
$B_{2}=$ drawn for bog ${ }^{2}$ (rill 4,5)
B_{3} = draw from buy 3 (roll 6)

$$
\begin{array}{lll}
P\left(B_{1}\right)=\frac{1}{2} & P\left(B_{2}\right)=\frac{1}{3} & P\left(B_{3}\right)=\frac{1}{6} \\
P\left(\$ 20 \mid B_{1}\right)=\frac{1}{4} & P\left(\$ 20 \mid B_{2}\right)=\frac{1}{2} & P\left(\$|20| B_{3}\right)=\frac{3}{4}
\end{array}
$$

(2)

$$
\begin{aligned}
P\left(B_{1} \mid \$ 20\right) & =\frac{P\left(\$ 120 \mid B_{1}\right) P\left(B_{1}\right)}{P\left(\$|20| B_{1}\right) P\left(B_{1}\right)+P\left(\$ 20 \mid B_{2}\right) P\left(B_{2}\right)+P\left(\| 20 / B_{3}\right) P\left(B_{3}\right)} \\
& =\frac{\frac{1}{4} \frac{1}{2}}{\frac{1}{4} \cdot \frac{1}{2}+\frac{1}{2} \cdot \frac{1}{3}+\frac{3}{4} \cdot \frac{1}{6}} \\
& =\frac{1 / 8}{1 / 8+1 / 6+\frac{3}{24}}
\end{aligned}
$$

$$
\begin{aligned}
(\text { iii) } P(\text { At lesst } 2 \text { citth }) & =1-P\left(\begin{array}{c}
N \text { atth }) \\
\binom{6}{2} \\
9 \\
2
\end{array}\right.
\end{aligned}
$$

4. A train to the western frontier will consist of 4 passenger cars, 3 cattle cars, and 2 luggage cars, which are to be put in order at random.
(a) Bandits plan to mount the train and enter the two rearmost cars. Find the probability that they enter
i. two passenger cars.
ii. a luggage car and a passenger car.
iii. at least one cattle car.

Bandits slat 2 cars it random
5

(b) A lady's shawl flies out a window of the foremost passenger car, reenters a window in the rearmost passenger car, and is seized by a gentleman who gallantly vows to return it while the train is in motion. With what probability can he make his way from the rearmost passenger car to the foremost, passing only through passenger cars?
(c) There are 14 head of cattle to be transported in the three cattle cars.

i. In how many ways can 5,5 , and 4 head of cattle, respectively, be put into the three cattle cars?
ii. The gallant gentleman owns 3 of the 14 head of cattle. If 5,5 , and 4 of the 14 head of cattle are put into the three cattle cars at random, with what probability will the gallant gentleman's cattle all be placed in the same cattle car?
5. Suppose there are 5 bowling balls which are identical except that one is magicahand delivers, no matter what, a strike with probability 3/4. Suppose you get a strike 1 out of 4 timon average when using non-magical bowling balls. You select one of the 5 balls at random and send it down the lane...
(a) Give the probability that you get a strike.
(b) Given that you got a strike, what is the probability you chose the magic bowling ball?
(c) Suppose you choose a ball and with the same ball you get two strikes in a row. What is the probability that you chose the magic ball?
$M=M_{g g^{2}}$ bal
$\delta=$ atrip

$$
\begin{aligned}
& P(\mu)=\frac{1}{5} \\
& P(S \mid \mu)=\frac{3}{4} \\
& P\left(S \mid \mu^{c}\right)=\frac{1}{5}
\end{aligned}
$$

(b)

$$
\begin{aligned}
P(M \mid s) & =\frac{P(S \mid \mu) P(\mu)}{P(S \mid M) P(\mu)+P\left(S \mid \mu^{c}\right) P\left(\mu^{c}\right)} \\
& =\frac{(3 / 4)^{1 / s}}{(3 / 4) 1 / s+1 / 4 \frac{4}{s}}
\end{aligned}
$$

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A \mid B) P(B)+\underbrace{P\left(A \mid B^{c}\right) P\left(B^{c}\right)}} .
$$

(c)

$$
\begin{aligned}
& S_{1}=\text { stritu } \quad P(M)=\frac{1}{5} \\
& S_{2}=\text { spathe state } \\
& p\left(s_{1} \cap s_{2} \mid \mu\right)=p\left(s_{1} \mid \mu\right) \cdot p\left(s_{2} \mid \mu\right) \\
& p\left(s_{1} \cap s_{2} \mid \mu^{c}\right)=P\left(s_{1} \mid \mu^{c}\right) \cdot P\left(s_{2} \mid \mu^{c}\right) \\
& p\left(M \mid S_{1} \cap s_{2}\right)=
\end{aligned}
$$

