STAT 515 fa 2023 Lec 07 slides

The Normal distribution

"Gaussian"
Karl B. Gregory

University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture, definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.

Normal or Gaussian probability distribution
A continuous rv X with pdf given by

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \frac{1}{\sigma} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right] \quad \begin{aligned}
& \mu=m u \\
& \sigma=\operatorname{sigma}
\end{aligned}
$$

has the Normal distribution with mean μ and variance σ^{2}

$$
\begin{gathered}
\text { Carl Friedrich } \\
\text { Gavß } \\
E x=\int_{-\infty}^{\infty} x f(x) d x=\mu
\end{gathered}
$$

We write $X \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$.

$$
\begin{gathered}
\text { Gaul } \\
E x=\int_{-\infty}^{\infty} x f(x) d x=\mu \\
V_{a r} x=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) d x=\sigma^{2}
\end{gathered}
$$

pdfs of several Normal distributions

The pdf of the $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$ distribution:

Mean and variance of Normal distribution

If $X \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$, then

- $\mathbb{E} X=\mu$
- $\operatorname{Var} X=\sigma^{2}$

Exercise: Suppose growth in height (ft) of Loblolly pines from age three to five is $\operatorname{Normal}\left(\mu=5, \sigma^{2}=1 / 4\right)$. Give the probability that the growth of a randomly selected Loblolly pine is
(1) between 4.5 and 5.5 feet. 0.683
(2) more than 7 feet. very smoll.
(3) less than 5.5 feet.
(0) between 3.5 feet and 5.5 feet.

Use the picture on the previous slide.
(1)

Get probabilities for $X \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$ like

$$
P(a<X<b)=\int_{a}^{b} \frac{1}{\sqrt{2 \pi}} \frac{1}{\sigma} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right] d x
$$

Conversion to the Standard Normal distribution
If $X \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$, then \# std. duidious from μ.

$$
z=\frac{X-\mu}{\sigma} \operatorname{Normal}^{(0,1)} \text {. }
$$

The $\operatorname{Normal}(0,1)$ dist. is called the Standard Normal distribution and its pdf is

$$
\prod_{\mu=0} \uparrow_{\sigma^{z, y}} \stackrel{p h i "}{\longrightarrow} \phi(z)=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2} .
$$

Can look up integrals over this pdf in a table.

The pdf of the Normal $(0,1)$ distribution:

The pdf of the $\operatorname{Normal}(0,1)$ distribution:

If $X \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$, we can find $P(a<X<b)$ in two steps:
(1) Transform a and b to the Z-world (\# of standard deviations world):

$$
a \mapsto \frac{a-\mu}{\sigma} \quad \text { and } \quad b \mapsto \frac{b-\mu}{\sigma},
$$

(2) Find

$$
P\left(\frac{a-\mu}{\sigma}<Z<\frac{b-\mu}{\sigma}\right)
$$

by using a " Z-table"-a table of Standard Normal probabilities.

$$
\sigma^{2}=\frac{1}{4}, \sigma=\frac{1}{2}
$$

Exercise: Suppose growth in height (ft) of Loblolly pines from age three to five is $\operatorname{Normal}\left(\mu=5, \sigma^{2}=1 / 4\right)$. Give the probability that the growth of a randomly selected Loblolly pine is
(1) between 5.25 and 6.25 feet. (1) $P(5.25<x<6.25)$
(2) more than 7.8 feet.
(3) less than 5.25 feet.
(0) between 4.1 feet and 5.2 feet.

Find the probabilities in the " Z-world" using a Z-table.

$$
z=\frac{x-\mu}{\sigma}
$$

$$
\begin{aligned}
& P\left(4.1<x^{<} 5.2\right)=.4641 \\
&+.1554 \\
& \hline .6195
\end{aligned}
$$

(2) $P(X>7.8) \approx 0$ (off the table!)

(1) $P(x<5.31)$

$$
p(x-5.25)=.7324
$$

(1) $X \sim \operatorname{Norm.l}\left(\mu=5, \quad \sigma^{2}=\frac{1}{4}\right)$

$$
\begin{aligned}
P(5.25 & \leq x \leq 6.25) \\
& =P\left(\frac{5.25-5}{1 / 2} \leq \frac{x-5}{1 / 2} \leq \frac{6.25-5}{1 / 2}\right) \\
& =P(1 / 2 \leq 2.5)
\end{aligned}
$$

Quantiles of a continuous random variable

For a continuous rv X with a strictly increasing cdf the θ th quantile of X is the value q_{θ} which satisfies
where θ is a value in $[0,1]$.

$$
\begin{array}{r}
P\left(X \leq q_{\theta}\right)=\theta, \\
\tau \quad \text { 万o }_{\theta}
\end{array}
$$

A quantile is like a percentile, but not expressed as a percentage.
Example: If X is the weight of a fresh chicken egg:

- With probability 0.90 , a randomly selected egg has weight ≤ 00.90.
- With probability 0.25 , a randomly selected egg has weight exceeding 00.75 .
- The median weight is $q_{0.50}$.
$t_{0}^{\prime \prime} z$ world": $z=\frac{x-\mu}{\sigma}$. From " z world" to " x world": $x=\mu+\sigma z$ If $X \sim \operatorname{Normal}\left(\mu, \sigma^{2}\right)$, we can find q_{θ} such that $P\left(X \leq q_{\theta}\right)=\theta$ in two steps:
(1) Find q_{θ}^{Z} such that $P\left(Z<q_{\theta}^{Z}\right)=\theta$ using a " Z-table".
(2) Get the corresponding quantile in the X-world as

$$
q_{\theta}=\mu+\sigma q_{\theta}^{Z}
$$

Exercise: Suppose growth in height (ft) of Loblolly pines from age three to five is $\operatorname{Normal}\left(\mu=5, \sigma^{2}=1 / 4\right)$. Let X denote the of a randomly selected Loblolly pine and find grouth
(1) the 75%-tile of growth.
(2) the median of the growths, i.e. the 50%-tile of X.
(3) an interval, centered at the mean, within which X lies with probability 0.50 .
(1) $\quad X \sim N\left(\mu=5, \quad \sigma^{2}=\frac{1}{12}\right)$

$q .75=5.3375$

$$
75 \%-26
$$

$$
\begin{aligned}
6.75=5+\frac{1}{2}(0.675) & =5+.3375 \\
& =5.3375
\end{aligned}
$$

$$
z=\frac{x-\mu}{\sigma} \quad \Leftrightarrow \quad x=\mu+\sigma z
$$

(2) 50%-tik. $P \quad x$

For a symmetri distribution, the meen and madion (so $2-+i L$) or gr.1!!
(3) $\quad X \sim N\left(\mu=5, \sigma^{2}=\frac{1}{4}\right)$

$$
\begin{aligned}
& \{.75=5.3375 \\
& f .25=4.6625=(5-0.3375)
\end{aligned}
$$

prom (z) (this is the $c d f$ - cumulative dist. firutin-
of $N(0,1)$).

Exercise: Redo sone exercises with pnorm and qnorm functions in R .

Exercise: You sell jars of baby food labelled as weighing $4 \mathrm{oz} \approx 113 \mathrm{~g}$. Suppose your process results in jar weights with the $\operatorname{Normal}\left(\mu=\underline{120}, \sigma^{2}=\underline{4^{2}}\right)$ distribution and that you will be fined if more than 2% of your jars weigh less than 113 g .
(1) What proportion of your jars weigh less than 113g?
(2) To what must you increase μ to avoid being fined?
(O Keeping $\mu=120 \mathrm{~g}$, to what must you reduce σ to avoid being fined?
(1) $X \sim N\left(\mu=120, \frac{\sigma^{2}=4^{2}}{\sigma=4}\right)$.

$$
p(x<113)=0.0401 \quad z=\frac{x-\mu}{\sigma}
$$

(2)

(3)

Do my data come from a Normal distribution?

Example: These are the commute times (sec) to class of a sample of students.

1832	1440	1620	1362	577	934	928	998	1062	900
1380	913	654	878	172	773	1171	1574	900	900

Check with a Q-Q plot whether the data quartiles match those of a Normal distribution.

$$
\begin{aligned}
& \bar{X}_{n}=\text { average, estimate for } \mu \\
& S_{n}^{2}=\text { sample variance, estionte for } \sigma^{2} .
\end{aligned}
$$

Some more Q-Q plots:
not Normal

Normal

not Normal

Sum of independent Normal random variables

If $X_{1} \sim \operatorname{Normal}\left(\mu_{1}, \sigma_{1}^{2}\right), \ldots, X_{n} \sim \operatorname{Normal}\left(\mu_{1}, \sigma_{n}^{2}\right)$ are independent random variables, then

$$
\sum_{i=1}^{n} X_{i} \sim \operatorname{Normal}\left(\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}\right) .
$$

In the above, independent means that the values of the rvs don't affect one other.
Exercise: Consider boxes containing 25 jars of baby food (from previous).
(1) What is the expected weight of the boxes?
(2) What is the standard deviation of the box weights?
(3) Give the probability that the box weighs less than 2,975 grams.
$X \sim N\left(\mu=120, \sigma^{2}=\eta^{2}\right) \longleftarrow$ each jor.
$Y=X_{1}+\ldots+X_{25} \quad$ (Sum of 25 jar wighte)
The $\quad Y \sim N \operatorname{Norm-1}\left(25 * 120,25 * 4^{2}\right)$
(1) $\quad \mathbb{E} Y=25^{\circ} 120=2500+500=3,000$
(2) $\sqrt{V_{0 . Y}}=\sqrt{25 \cdot 4^{2}}=5.4=20$
(3) $y \sim \operatorname{Norml}\left(\mu_{y}=3000, \quad \sigma_{y}^{2}=20^{2}\right)$

$$
P(Y \leq 2,975)=0.1056
$$

2,975

$$
\begin{gathered}
\frac{2975-3000}{20} \\
11 \\
\frac{-25}{20} \\
11 \\
-1.25
\end{gathered}
$$

