## STAT 515 Lec 8

# The Poisson and Exponential Distributions 

Karl Gregory

## The Poisson distribution

Suppose $X$ is the number of occurrences per unit of time or space of an event, where the occurrences

1. are independent
2. occur randomly but at a constant rate over the entire time/space.

We often treat the mechanism which generates the counts $X$ over a span of time or region in space under a mathematical model called a Poisson process. We have in mind random variables like those in the following examples:

Example. Let $X$ be the number of customers entering a store in an hour.
Example. Let $X$ be the number of earthquakes per decade in a region.
Example. Let $X$ be the number of weeds growing per square meter of a field.
Example. Let $X$ be the number of bird nests per acre in a habitat.

For such random variables as in these examples, which are counts that could take the values $0,1,2, \ldots$, we often posit a probability distribution called the Poisson distribution, which was first suggested by the subject of the portrait in Figure 1: Siméon Denis Poisson.

## Definition: Poisson distribution

The Poisson distribution with mean $\lambda$ is the probability distribution with probability mass function given by

$$
p(x)=\frac{e^{-\lambda} \lambda^{x}}{x!}
$$

where $\lambda>0$. If $X$ is a random variable with this distribution, we write $X \sim \operatorname{Poisson}(\lambda)$.


Figure 1: Siméon Denis Poisson (1781-1840)

## Result: Mean and variance of the Poisson distribution

If $X \sim \operatorname{Poisson}(\lambda)$, then

$$
\mathbb{E} X=\lambda \quad \text { and } \quad \operatorname{Var} X=\lambda
$$

The values of the probability mass function of the $\operatorname{Poisson}(\lambda)$ distribution are plotted below for $\lambda$ taking the values 1,4 , and 7 in the first plot and the values 10,20 , and 30 . in the second plot. Note that the distributions are "centered" at these $\lambda$ values in the sense that if they were sitting on a see-saw with a fulcrum positioned at $\lambda$, the see-saw would not tip in either direction.


Exercise. Suppose the number of car accidents on any given day in a mid-sized city follows a Poisson distribution with a mean of 20 accidents per day.

1. Find the probability that there are exactly 10 accidents on a given day.

Answer: Letting $X$ be the number of accidents on a given day, we have $X \sim$ $\operatorname{Poisson}(\lambda)$ with $\lambda=20$. So the probability that there are exactly 10 accidents on a given day is

$$
P(X=10)=\frac{(20)^{10} e^{-20}}{10!}=\operatorname{dpois}(\mathrm{x}=10, \text { lambda }=20)=0.005816307
$$

2. Find the probability that there are 12 or more accidents on a given day.

Answer: We have

$$
\begin{aligned}
P(X \geq 12) & =1-P(X \leq 11) \\
& =1-[P(X=0)+P(X=1)+\cdots+P(X=11)] \\
& =1-\sum_{x=0}^{11} \frac{(20)^{x} e^{-20}}{x!} \\
& =1-\text { ppois }(\mathrm{q}=11,1 \text { ambda=20 }) \\
& =0.9786132
\end{aligned}
$$

Keeping in mind that our random variable $X$ represents a count per unit time or space, we may suppose that if we make our counts over larger units of time or space, the counts will tend to be greater. A hallmark of Poisson processes is that the distribution of the counts within a unit of time or space scales with the size of the unit. That is, we have the following:

## Result: Scaling the Poisson time/space interval

Suppose $X \sim$ Poisson $(\lambda)$ comes from a Poisson process such that $X$ is the number of occurrences per unit of time or space of an event. Then if $Y$ is the number of occurrences of the event per $t$ units of time or space, we have $Y \sim \operatorname{Poisson}(t \lambda)$.

Exercise. Suppose the number of car accidents on any given day in a mid-sized city follows a Poisson distribution with a mean of 20 accidents per day. What is the probability that there are no more than 130 car accidents in a given week?

Answer: Let $X \sim \operatorname{Poisson}(\lambda)$, with $\lambda=20$, be the number of car accidents on a given day and let $Y$ be the number of car accidents in a given week. Then $Y \sim \operatorname{Poisson}(140)$, since $7(20)=140$. We have

$$
\begin{aligned}
P(Y \leq 130) & =P(Y=0)+P(Y=1)+\cdots+P(Y=130) \\
& =\sum_{y=0}^{130} \frac{(140)^{y} e^{-140}}{y!} \\
& =\text { ppois }(\mathrm{q}=130, \text { lambda }=140) \\
& =0.2124409
\end{aligned}
$$

## The Exponential distribution

Suppose $X$ comes from a Poisson process where the expected number of occurrences per unit of time or space is $\lambda$. Let $Y$ be the time between any two occurrences of the event or the time until the first occurrence. How might we get the probability density function of the random variable $Y$ ? Begin by writing, for some time $y$ into the future.

$$
P(Y>y)=P(\text { "no occurrences before time } y \text { "). }
$$

Now,

- In 1 unit of time or space, we "expect" $\lambda$ occurrences.
- In $y$ units of time or space, we "expect" $y \lambda$ occurrences.

Here "expect" is in the sense of expected value. Following this logic, we can see that the number of occurrences in $y$ units of time or space follows a Poisson distribution with mean $y \lambda$. Thus we may write

$$
P(Y>y)=P(\text { "no occurrences before time } y ")=\frac{(y \lambda)^{0} e^{-y \lambda}}{0!}=e^{-y \lambda} .
$$

From this we get

$$
P(Y \leq y)=P(\text { "first occurrence is before time } y \text { " })=1-P(Y>y)=1-e^{-y \lambda} .
$$

Recalling the definition of the cumulative distribution function (cdf), we see that we have derived the cdf $F$ of the random variable $Y$ as

$$
\begin{equation*}
F(y)=1-e^{-y \lambda} . \tag{1}
\end{equation*}
$$

By its definition, the probability density function $f$ of the random variable $Y$ must satisfy

$$
F(y)=\int_{-\infty}^{y} f(t) d t \quad \text { for all } y .
$$

Using calculus, we find that $f$ must be the function

$$
f(y)=\lambda e^{-y \lambda}
$$

which we find by taking the derivative of $F(y)$ with respect to $y$ :

$$
\frac{d}{d y} F(y)=\frac{d}{d y}\left[1-e^{-y \lambda}\right]=-e^{-y \lambda}(-\lambda)=\lambda e^{-y \lambda} .
$$

The pdf of $Y$ has a shape like the curve below:


For any $a$ the the probability $P(Y \leq a)$ is given by $F(a)$, which is the area under the pdf to the left of $a$, as depicted below.


## Definition: Exponential distribution

The continuous probability distribution with pdf given by

$$
f(y)=\lambda e^{-y \lambda}
$$

is called the exponential distribution with mean $1 / \lambda$. If a random variable $Y$ has this distribution, we write $Y \sim$ Exponential $(\lambda)$.

If $Y \sim \operatorname{Exponential}(\lambda)$ then

$$
\mathbb{E} Y=\frac{1}{\lambda} \quad \text { and } \quad \operatorname{Var}(Y)=\frac{1}{\lambda^{2}}
$$

Exercise. Suppose the occurrence of blown-out tires lying along the freeway can be regarded as a Poisson process such that for every mile, the expected number of blown-out tires is $1 / 3$.

1. Let $X$ be the number of tires we see in the next mile.
(a) Find $P(X=2)$.

Answer: We have $X \sim \operatorname{Poisson}(1 / 3)$, so

$$
P(X=2)=\frac{(1 / 3)^{2} e^{-(1 / 3)}}{2!}=\operatorname{dpois}(2,1 / 3)=0.0398
$$

(b) Find $P(X \geq 1)$.

Answer: We have

$$
P(X \geq 1)=1-P(X=0)=1-\frac{(1 / 3)^{0} e^{-(1 / 3)}}{0!}=1-\operatorname{dpois}(0,1 / 3)=0.283
$$

2. Let $W$ be the number of tires we see in the next 12 miles.
(a) Find $P(W=2)$.

Answer: We have $W \sim \operatorname{Poisson}(4)$, so

$$
P(W=2)=\frac{4^{2} e^{-4}}{2!}=0.1465
$$

(b) Find $P(W \geq 1)$.

Answer: We have

$$
P(W \geq 1)=1-P(W=0)=1-\frac{4^{0} e^{-4}}{0!}=1-e^{-4}=0.982
$$

3. Let $Y$ be the distance traveled before the first blown-out tire is seen.
(a) What is the distribution of $Y$ ?

Answer: Since the occurrences of blown-out tires lying on the freeway is a Poisson process such that the expected number of blown-out tires in any one-mile segment is $1 / 3$, the distances between blown-out tires would follow an exponential distribution with mean 3 . That is $Y \sim \operatorname{Exponential}(1 / 3)$.
(b) Find $P(Y=5)$.

Answer: Since $Y$ is a continuous random variable, $P(Y=5)=0$.
(c) Find $P(Y \leq 5)$.

Answer: We can use the cdf of the Exponential(1/3) distribution from equation (1). we have

$$
P(Y \leq 5)=1-e^{-(1 / 3)(5)}=\operatorname{pexp}(5,1 / 3)=0.811 .
$$

(d) Find $P(Y>10)$.

Answer: We can again use the cdf of the Exponential(1/3) distribution.
$P(Y>10)=1-P(Y \leq 10)=1-\left[1-e^{-(1 / 3)(10)}\right]=1-\operatorname{pexp}(10,1 / 3)=0.036$.

