
STAT 515 Lec 08 slides

The Poisson and Exponential distributions

Karl B. Gregory

University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture,
definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.
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Poisson process
Suppose X = # occurrences per unit of time or space, where the occurrences

1 are independent
2 occur randomly but at a constant rate over the entire time/space.

A process generating such occurrences is called a Poisson process.

Examples:
1 # customers entering a store in an hour.
2 # earthquakes per decade in a region.
3 # weeds growing per square meter of a field.
4 # bird nests per acre in a habitat.
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Poisson distribution
The probability distribution with pmf given by

p(x) =
e���x

x!
for x = 0, 1, . . .

with � > 0 is called the Poisson distribution.

We write X ⇠ Poisson(�).
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Mean and variance of Poisson distribution
If X ⇠ Poisson(�) then

EX = �.
VarX = �.

Exercise: Let X ⇠ Poisson(20) be the # car accidents in town on a given day.
1 Find P(X = 10).
2 Find the probability that there is at least one accident.
3 Find P(X  15).
4 Find P(X � 20).
5 If X observed on many days, to what will the average of the values be close?

Introduce dpois and ppois functions in R.
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Mean number of occurrences scales with unit of time/space. . .

Let X ⇠ Poisson(�), where X = # occurrences per unit time/space of an event.

Then if Y = # occurrences in t units of time/space, we have Y ⇠ Poisson(t�).

Exercise: Let Y be the # car accidents in town in a given week.
1 What is the distribution of Y ? Refer to previous example.
2 Find P(Y  130).
3 Find P(Y = 140).
4 Find P(Y � 150).
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Consider the time between occurrences in a Poisson process. . .

Exponential distribution
The continuous probability distribution with pdf and cdf given by

f (y) = �e�y�

F (y) = 1 � e�y� for y > 0

with � > 0 is called the Exponential distribution.

We write Y ⇠ Exponential(�).

Derive: Start with P(Y > y) = P(no occurrences before time y).
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Mean and variance of Exponential distribution
If Y ⇠ Exponential(�) then

EY = 1/�.
VarY = 1/�2.

Exercise: Suppose the occurrence of car accidents in a town is a Poisson process
with the expected number of accidents per day equal to 20.

1 What is the expected time between car accidents?
2 What is the probability that an accident happens in the next hour?
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Exercise: Suppose the occurrence of blown-out tires along a freeway is a Poisson
process with the expected number of blown-out tires per mile equal to 1/3.

Find the probabilities of the following:
1 finding 2 blown-out tires in the next mile.
2 finding at least one blown-out tire in the next mile.
3 finding fewer than 3 blown-out tires in the next 12 miles.
4 finding a blown-out tire before going 5 miles.
5 not finding a blown-out tire in the next 3 miles.
6 finding a blown-out tire exactly 3 miles down the road.
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