
STAT 515 Lec 09 slides

Sampling distributions and the Central Limit Theorem

Karl B. Gregory

University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture,
definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.
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Sampling distribution of the mean

Random sample
A collection of independent rvs with the same distribution is a random sample.

Often denote by X1, . . . ,Xn, where n is the sample size.
In random sample, X1, . . . ,Xn are iid : independent and identically distributed.
Common distribution of X1, . . . ,Xn called the population distribution.

Can write X1, . . . ,Xn
ind∼ F if a rs from a distribution F .

Goal is to learn from X1, . . . ,Xn about the population distribution.
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Sampling distribution of the mean

Expected value and variance of the sample mean
Let X1, . . . ,Xn be a rs from a population with mean µ and σ2. Then

EX̄n = µ and Var X̄n =
σ2

n
.

Examples:
1 If X1, . . . ,Xn

ind∼ Normal(µ, σ2), then EX̄n = µ and Var X̄n = σ2/n.

2 If X1, . . . ,Xn
ind∼ Bernoulli(p), then EX̄n = p and Var X̄n = p(1− p)/n.

3 If X1, . . . ,Xn
ind∼ Poisson(λ), then EX̄n = λ and Var X̄n = λ/n.

4 If X1, . . . ,Xn
ind∼ Exponential(λ), then EX̄n = 1/λ and Var X̄n = 1/(nλ2).
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Sampling distribution of the mean

Consider the diameters of 4,176 abalones with mean 0.4078915. link to data
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Sampling distribution of the mean
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Sampling distribution of the mean

Exercise: Treat the 4,176 abalone as a population. The mean diameter is
µ = 0.408. Let X̄n be the mean diameter from a sample of abalone.

1 For the sample sizes n = 5, 25, 100, draw 1,000 samples and
1 Make a histogram of the X̄n values.
2 Make a Normal Q-Q plot of the X̄n values.

2 Around what value are the values of X̄n centered?
3 What changes as n changes?
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Sampling distribution of the mean

Histogram of Xn with n = 5
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Sampling distribution of the mean

Histogram of Xn with n = 25

Xn

F
re

qu
en

cy

0.36 0.40 0.44

0
20

40
60

80
10

0

−3 −2 −1 0 1 2 3
−

3
−

2
−

1
0

1
2

Normal Q−Q plot of n(Xn − µ) σ

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Karl B. Gregory (U. of South Carolina) STAT 515 Lec 09 slides 8 / 26



Sampling distribution of the mean

Histogram of Xn with n = 100
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Sampling distribution of the mean

If X1, . . . ,Xn a rs of abalone, EX̄n = 0.4079 and Var X̄n = (0.09924)2/n.

Xn
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Sampling distribution of the mean

Distribution of sample mean when population is Normal

Let X1, . . . ,Xn
ind∼ Normal(µ, σ2). Then X̄n ∼ Normal(µ, σ2/n).

Can use this to get probabilities like P(a < X̄n < b) as follows:

1 Transform a and b to the Z -world (# of standard deviations world):

a 7→ a− µ
σ/
√
n

and b 7→ b − µ
σ/
√
n
,

2 Find
P

(
a− µ
σ/
√
n
< Z <

b − µ
σ/
√
n

)
.
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Sampling distribution of the mean

Exercise: Suppose the number of minutes USC students spend talking on phone
each month has the Normal(µ = 450, σ2 = 502) distribution.

1 Let X be the talk time of one randomly selected student.

a. Find P(X < 425).
b. Find P(|X − 450| > 50).

2 Now let X̄n be the mean talk time from n = 9 randomly selected students.

a. Find P(X̄n < 425).
b. Find P(|X̄n − 450| > 50).
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Central Limit Theorem

Central Limit Theorem
Let X1, . . . ,Xn be a rs from a dist. with mean µ and variance σ2 <∞. Then

X̄n − µ
σ/
√
n

behaves more and more like Z ∼ Normal(0, 1)

for larger and larger n.

This means that for large n (say n ≥ 30), we have

X̄n
approx∼ Normal

(
µ,
σ2

n

)
.
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Central Limit Theorem

2009 Boston Marathon finishing times (hrs)

Finishing time (hrs)

2 3 4 5 6

men
women
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Central Limit Theorem
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Central Limit Theorem

Exercise: Women’s finishing times for the 2009 Boston Marathon had mean 4.02
hours and standard deviation 0.555 hours.

Consider sampling n = 30 women and let X̄n be the mean of their finishing times.

1 Find an approximation to P(X̄n < 3.90).
2 Find an approximation to P(X̄n > 4.25).
3 Find an approximation to P(|X̄n − 4.02| < 0.2).

Now use R to draw 1,000 samples of size n = 30. link to women’s data.

1 Make histogram and Normal Q-Q plot of X̄n.
2 Get the probabilities above using the output of the simulation.
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Central Limit Theorem

Histogram of Xn with n = 30
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Central Limit Theorem
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x

f(
x)

x

hi
st

og
ra

m

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●
●

●

●

●
●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●
●●●

●●

●●

●

●

●

●
●

●

●

●
●

●●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●

●●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

● ●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●
●

●●
●●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●
●

●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Normal quantiles

S
am

pl
e 

qu
an

til
es

heavy−tailed

x

f(
x)

x

hi
st

og
ra

m

●
●● ●●

●
●

●
●

●●●●
●

●
●●

●●

●

●
●

●

●

●

●

●

●

●
●●

● ●
●

● ●●
●

●●

●

●●●
●

●

●

●
● ●●●

●●
●

● ●
●● ● ●●●●

●● ●● ●
●

●

●●● ●
● ●●

●

●
●●

●

●●

●

●●●

●

●● ● ●●

●
●

●
●

●

●

●

●

●●

●

●
● ●● ● ●

●●●
● ●

●

●

●
●

●
●●

●

●

●
● ● ●

●

●● ●
●

●
●● ●

●●● ●● ●
●

●

●
● ●

●

●
●

●●●
●

●●●

●
●●

●●
●

●●
●● ●●●

●
● ●●●● ●
●●

●
●●● ●●

● ●●● ●●
●

●

●●
●

●●
●

●
●

●●● ●●
●

●
● ●●

●

●
●● ●

●
● ●● ●

●

●
●●●●

●
●●

● ●
●

●

●

●

●
●

●
●●●

●

●●
●

●●
●

●●●●
●●

●
●

●
● ● ●●●

●

●

●
●●●● ● ●

●

● ●

●

● ● ● ●

●

●● ●
●

●
●●●●

●
●

●●
●

●● ●
●●●

●
●

●
●

●
● ●

● ●●●●

●

●●●●
●

● ●

●

●
●

●

●

●● ●●
●

●● ●

●
● ●

● ●● ● ●● ●
●

●
●●●●●

●●●●
● ●

●
● ●● ●

●
●●

●

●●
●

●

●

●

●●
● ● ●

●

● ●●●● ●
●

●
●●

●

●●

●

● ●

●

●
●

●
●

● ● ●

●

●● ●
●

●
●●

●

●

●●●●

●

●●●
●

●●●●●
●

●

●

●

●

●

●●●
●

●

●

●
●

●

●

●
●

● ●● ●

●
●

●

●

●

●
● ●

●
●

●●
● ●

●●●●●●
●● ● ●

●●

●

●●●●
●

● ●

●
● ● ●
● ●

●
●

●

●●
●

●● ●

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Normal quantiles

right−skewed

x

f(
x)

x

hi
st

og
ra

m

●
●●●

●

●
●●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●
●

●
●

●
●

●●

●●

●

●

●

●●●

●

●
●

●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●●●●●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●●

●

●
●●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●●
●

●●

●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●●

●●
●

●

●

●
●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●

●

●●
●●

●●

●●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Normal quantiles

Karl B. Gregory (U. of South Carolina) STAT 515 Lec 09 slides 18 / 26



Central Limit Theorem for the proportion

We can apply the Central Limit theorem to proportions. . .

Central Limit Theorem for the sample proportion

Let X1, . . . ,Xn
ind∼ Bernoulli(p) and let p̂n = X̄n. Then

p̂n − p√
p(1− p)/n

behaves more and more like Z ∼ Normal(0, 1)

for larger and larger n.

This means that for large n (say np ≥ 5 and n(1− p) ≥ 5), we have

p̂n
approx∼ Normal

(
p,

p(1− p)

n

)
.

Also:
∑n

i=1 Xi = np̂n
approx∼ Normal (p, np(1− p)) for large n.
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Central Limit Theorem for the proportion

Exercise: Treat the 4,176 abalone as a population. The proportion classified as
infants among the abalone is p = 0.321; let p̂n represent the proportion of infants
in a random sample of abalone.

1 For the sample sizes n = 5, 25, 100, draw 1,000 samples and
1 Make a histogram of the p̂n values.
2 Make a Normal Q-Q plot of the p̂n.

2 Around what value are the values of p̂n centered?
3 What changes as n changes?
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Central Limit Theorem for the proportion

Histogram of p̂n with n = 5
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Central Limit Theorem for the proportion

Histogram of p̂n with n = 25
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Central Limit Theorem for the proportion

Histogram of p̂n with n = 100
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Central Limit Theorem for the proportion

Exercise: Suppose 60% of USC undergraduates are registered to vote. Consider
taking a sample of size n = 15. Let p̂n be the number in your sample who are
registered to vote.

1 Find the approximate value of P(p̂n > 0.70) using the Normal distribution.
2 Find the exact value of P(p̂n > 0.70) using the Binomial distribution.
3 Find the approximate value of P(0.30 < p̂n < 0.80) using the Normal dist.
4 Find the exact value of P(0.30 < p̂n < 0.80) using the Binomial dist.
5 Repeat the above for a sample of size n = 100.
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Central Limit Theorem for the proportion

Summary of sampling distribution results for X̄n:

X̄n−µ
σ/
√
n
∼ Normal(0, 1)

X ∼ N(µ, σ 2
)

X̄n−µ
σ/
√
n
non-Normal

n < 30

X̄n−µ
σ/
√
n

approx∼ Normal(0, 1)

n ≥
30

X non
- No

rmal
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Central Limit Theorem for the proportion

Summary of sampling distribution results for p̂n:

p̂n−p√
p(1−p)

n

approx∼ Normal(0, 1)

np̂n
approx∼ Normal(np, np(1− p))

np̂n ∼ Binomial(n, p)

min{np, n(1− p)} ≥ 5

np̂n ∼ Binomial(n, p)

min{np, n
(1− p)} < 5
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