STAT 515 Lec 10

Confidence intervals for the mean and proportion

Karl Gregory

Confidence intervals

Now we come to the payoff. The goal of statistics is to learn about a population from a random sample. We here concern ourselves with the questions:

1. What can we say about μ based on \bar{X} ?
2. What can we say about p based on \hat{p} ?

We use \bar{X} to estimate μ, but we know that if we took another random sample, we would not get the same value of \bar{X}. Likewise, we use \hat{p} to estimate p, but we know that if we took another random sample, it is unlikely that we would get the same \hat{p}. It would be silly to say, "We believe that the value of μ is equal to \bar{X}," when \bar{X} is the mean of a random sample. Likewise, it would be silly to say, "We believe that the value of p is equal to \hat{p}," when \hat{p} is the proportion of successes in a random sample. What then can we say? Instead of saying that μ is equal to \bar{X} or that \hat{p} is equal to p, we say, "We are fairly confident that μ lies within some interval around \bar{X}," or, "We are fairly confident that p lies within some interval around \hat{p}." Such an interval is called a confidence interval: it is an interval constructed from the random sample such that it will contain the parameter of interest, be it μ or p, with a certain probability.

CI for the mean of a Normal population (σ known)

Suppose we draw a random sample X_{1}, \ldots, X_{n} from a population with an unknown mean μ and a known variance σ^{2}. Suppose in addition that \bar{X} behaves like a $\operatorname{Normal}\left(\mu, \sigma^{2} / n\right)$ random variable (i.e. the population is Normal or the sample size n is large enough). We would like to construct an interval (L, U), where L and U are computed from the sample,
such that $P(L \leq \mu \leq U)$ is large. That is, we would like our interval (U, L) to contain the value of μ with high probability.

To start off, let's say we want an interval which contains μ with probability 0.95 . We may arrive at such an interval in two steps:

1. First note that if \bar{X} has the $\operatorname{Normal}\left(\mu, \sigma^{2} / n\right)$ distribution, then

$$
P\left(-1.96 \leq \frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \leq 1.96\right)=0.95
$$

Why? Because $Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}$ is a $\operatorname{Normal}(0,1)$ random variable, and the area under the $\operatorname{Normal}(0,1)$ density function between -1.96 and 1.96 is 0.95 :

2. We may rearrange the above expression to get

$$
P\left(\bar{X}-1.96 \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{X}+1.96 \frac{\sigma}{\sqrt{n}}\right)=.95 .
$$

So the desired interval is given by

$$
\bar{X} \pm 1.96 \frac{\sigma}{\sqrt{n}}
$$

We call this a 95% confidence interval for μ.
More generally, for any $\alpha \in(0,1)$, we consider the construction of $(1-\alpha) 100 \%$ confidence intervals, where the value α is the probability that our confidence interval will not contain μ. For a 95% confidence interval, the corresponding value of α is 0.05 . We refer to $1-\alpha$ as the confidence level of the confidence interval. To give a general expression for a $(1-\alpha) 100 \%$ confidence interval for μ, we define for any $0<\xi<1$ the quantity z_{ξ} as the value such that

$$
P\left(Z>z_{\xi}\right)=\xi,
$$

where Z is a random variable having the $\operatorname{Normal}(0,1)$ distribution. The value z_{ξ} admits the depiction below:

Now, if \bar{X} has the $\operatorname{Normal}\left(\mu, \sigma^{2} / n\right)$ distribution, we may construct for any $\alpha \in(0,1)$ a $(1-\alpha) 100 \%$ confidence interval for the mean μ by noting that

$$
P\left(-z_{\alpha / 2} \leq \frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \leq z_{\alpha / 2}\right)=1-\alpha
$$

corresponding to the picture

We may rearrange the above expression to get

$$
P\left(\bar{X}-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{X}+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right)=1-\alpha
$$

from which we can see that a $(1-\alpha) 100 \%$ confidence interval for μ may be constructed as

$$
\bar{X} \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}
$$

We now state this formally:

Result: Confidence interval for mean of Normal population with σ known

For a random sample $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Normal}\left(\mu, \sigma^{2}\right)$ with σ known,

$$
\bar{X} \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}
$$

is a $(1-\alpha) \times 100 \%$ confidence interval for μ.

We are very often interested in building confidence intervals at the $0.90,0.95$, or 0.99 confidence levels, for which the following diagram depicts the necessary quantiles, $z_{0.05}=1.645$, $z_{0.025}=1.96$, and $z_{0.005}=2.576$, respectively, of the standard Normal distribution:

Exercise. Suppose you have a random sample of size 35 with sample mean $\bar{X}=25$ from a right-skewed population with unknown μ and with $\sigma^{2}=10$. What is a 90% confidence interval for the mean, and what is its interpretation?

Answer: The population distribution is not Normal, but since the sample size is greater than 30, we can treat \bar{X} like a $\operatorname{Normal}(\mu, 10 / 35)$ random variable. For a 90% confidence interval we have $\alpha=0.10$, so we need $z_{\alpha / 2}=z_{0.05}$. We have $z_{0.05}=1.645$. Therefore, a 90% confidence interval for μ is given by

$$
25 \pm 1.645 \frac{\sqrt{10}}{\sqrt{35}}=(24.12,25.88)
$$

We are 90% confident that the mean μ lies within the interval $(24.12,25.88)$.
Exercise. Suppose you have a random sample of size 8 with sample mean $\bar{X}=12$ from a population with a Normal distribution with unknown μ and with $\sigma^{2}=9$. What is a 95% confidence interval for the mean and what is its interpretation?

Answer: Since the population is Normal, \bar{X} has the $\operatorname{Normal}(\mu, 9 / 8)$ distribution even though the sample size is small. For a 95% confidence interval we have $\alpha=0.05$, so we need to get $z_{\alpha / 2}=z_{0.025}$. We find from the Z table that $z_{0.025}=1.96$. Therefore, a 95%
confidence interval for μ is given by

$$
12 \pm 1.96 \frac{3}{\sqrt{8}}=(9.92,14.08)
$$

We are 95% confident that the mean μ lies within the interval $(9.92,14.08)$.

Note: The textbook calls $1-\alpha$ the confidence coefficient.

CI for the mean of a non-Normal population (σ known)

when the population is not Normally distributed, the sample mean \bar{X}_{n} does not have a Normal distribution, so the confidence interval for the mean given the previous section cannot be used; however, according to the central limit theorem, the behavior of the quantity

$$
\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}}
$$

becomes more and more like that of a standard Normal random variable as the sample size n gets larger. So if n is large, then the confidence interval given in the previous section will still be approximately correct. We state this here as a result:

Result: Confidence interval for mean of a non-Normal pop. with σ known
Let X_{1}, \ldots, X_{n} be a random sample from a non-Normal distribution with mean μ and variance $\sigma^{2}<\infty$. Then

$$
\bar{X}_{n} \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}
$$

contains μ with probability closer and closer to $1-\alpha$ for larger and larger n.

Confidence interval for the proportion p

We construct a $(1-\alpha) 100 \%$ confidence interval for p based on \hat{p} in much the same way as we did for μ based on \bar{X}. Recall that \hat{p} is nothing but the mean of a random sample of size n of the $\operatorname{Bernoulli}(p)$ random variables

$$
X_{i}=\left\{\begin{array}{ll}
1 & \text { if outcome } i \text { a "success" } \\
0 & \text { if outcome } i \text { a "failure" }
\end{array} \quad \text { for } i=1, \ldots, n,\right.
$$

where the probability of "success" is p and the probability of "failure" is $1-p$. If the conditions $n p \geq 5$ and $n(1-p) \geq 5$ are satisfied, then the central limit theorem tells us that

$$
\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}} \text { approximately follows the } \operatorname{Normal}(0,1) \text { distribution, }
$$

which allows us to write

$$
P\left(-z_{\alpha}<\frac{\hat{p}-p}{\sqrt{\frac{p(1-p)}{n}}}<z_{\alpha}\right) \approx 1-\alpha .
$$

Rearranging the above gives

$$
P\left(\hat{p}-z_{\alpha / 2} \sqrt{\frac{p(1-p)}{n}}<p<\hat{p}+z_{\alpha / 2} \sqrt{\frac{p(1-p)}{n}}\right) \approx 1-\alpha
$$

from which we see that an approximate $(1-\alpha) 100 \%$ confidence interval for p could be constructed as

$$
\begin{equation*}
\hat{p} \pm z_{\alpha / 2} \sqrt{\frac{p(1-p)}{n}} \tag{1}
\end{equation*}
$$

However, we cannot compute this interval because we don't know the value of p. There are a couple of ways to deal with this.

The Wald interval (for $n \hat{p} \geq 15$ and $n(1-\hat{p}) \geq 15$)

Our first instinct may be to replace p in (1) by its estimator \hat{p}. We certainly may do this, but the resulting interval is not very reliable unless the sample size is very large; it is especially unreliable when the true proportion is close to 0 or 1 .

When the sample size is very large and it is believed that p is not very close to 0 or 1 (we can check the condition $n \hat{p} \geq 15$ and $n(1-\hat{p}) \geq 15)$, an approximate ($1-\alpha$) 100% confidence interval for p can be constructed by

$$
\hat{p} \pm z_{\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} .
$$

Result: Wald interval for a population proportion

For a random sample $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Bernoulli}(p)$,

$$
\hat{p}_{n} \pm z_{\alpha / 2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
$$

is an approximate $(1-\alpha) \times 100 \%$ confidence interval for p.
Use only when $n \hat{p} \geq 15$ and $n(1-\hat{p}) \geq 15$.

This is called the Wald interval, and its performance is notoriously bad unless n is very large. By "bad peformance", we mean that the actual probability that the interval contains the true value of p is quite different from the specified probability of $1-\alpha$.

The Agresti-Coull interval (for $n \hat{p} \geq 5$ and $n(1-\hat{p}) \geq 5$)

It has been shown that the following interval works much better than the Wald interval: Define

$$
\tilde{p}=\frac{\#\{\text { successes }\}+2}{n+4} .
$$

Now, a much better $(1-\alpha) 100 \%$ confidence interval for p can be constructed by

$$
\tilde{p} \pm z_{\alpha / 2} \sqrt{\frac{\tilde{p}(1-\tilde{p})}{n+4}}
$$

This is called the Agresti-Coull interval, and it has been shown to have good performance provided $n \hat{p} \geq 5$ and $n(1-\hat{p}) \geq 5$, so it can be used under much smaller sample sizes than the Wald interval. The textbook calls this interval the Wilson adjusted interval.

Result: Agresti-Coull interval for a population proportion

For a random sample $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Bernoulli}(p)$,

$$
\tilde{p}_{n} \pm z_{\alpha / 2} \sqrt{\frac{\tilde{p}(1-\tilde{p})}{n+4}}, \quad \text { where } \tilde{p}=\frac{\#\{\text { successes }\}+2}{n+4},
$$

is an approximate $(1-\alpha) \times 100 \%$ confidence interval for p.
Use only when $n \hat{p} \geq 5$ and $n(1-\hat{p}) \geq 5$.

Exercise. Suppose you draw a random sample of 1000 registered voters. Suppose that 478 of the 1000 say they will vote for candidate A. Build a 95% confidence interval for the proportion of registered voters who will vote for candidate A.

Answer: For a 95% confidence interval, $\alpha=0.05$, and $z_{0.025}=1.96$. So the Agresti-Coull interval is given by

$$
\frac{480}{1004} \pm 1.96 \sqrt{\frac{(480 / 1004)(1-480 / 1004)}{1004}}=0.478 \pm 0.031=(0.447,0.509)
$$

The Wald interval is in this case the same out to three decimal places because the sample size is so large:

$$
\frac{478}{1000} \pm 1.96 \sqrt{\frac{(478 / 1000)(1-478 / 1000)}{1000}}=0.478 \pm 0.031=(0.447,0.509)
$$

Exercise. Suppose you randomly sample 50 USC undergraduates and find that 5 of them hang-dry their laundry to conserve electricity.

1. Build a 95% Agresti-Coull confidence interval for p, the proportion of USC undergraduates who hang-dry their laundry to save electricity.

Answer: For a 95% confidence interval $\alpha=0.05$, so we use $z_{0.025}=1.96$. Then the Agresti-Coull interval is

$$
\frac{7}{54} \pm 1.96 \sqrt{\frac{(7 / 54)(1-7 / 54)}{54}}=(0.040,0.219)
$$

2. Build a 95% Wald confidence interval for p.

Answer: The Wald interval is

$$
\frac{5}{50} \pm 1.96 \sqrt{\frac{(5 / 50)(1-5 / 50)}{50}}=(0.017,0.183)
$$

The Wald and Agresti-Coull intervals in this example are very different. It is better here to use the Agresti-Coull interval because of the smaller sample and the small number of successes.

