STAT 515 Lec 11

Variance estimation

Karl Gregory

Estimating σ^{2} from the sample

Suppose X_{1}, \ldots, X_{n} are a random sample from the $\operatorname{Normal}\left(\mu, \sigma^{2}\right)$ distribution, where μ and σ^{2} are unknown. We consider estimating σ^{2} and building a confidence interval for it.

Our estimator of σ^{2} is the sample quantity

$$
S_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} .
$$

We know that S_{n}^{2} will take a different value every time we draw a sample; if we were to repeat our experiment many times, we would get many different values of S_{n}^{2}. Our question is what the distribution of these values would look like.

In building a confidence interval for the mean μ, we began with the assumption

$$
\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim \operatorname{Normal}(0,1)
$$

which is satisfied if the population distribution is Normal or approximately satisfied if the sample size is large. This allowed us to write

$$
P\left(-z_{\alpha / 2} \leq \frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \leq z_{\alpha / 2}\right)=1-\alpha
$$

which we could rearrange to get

$$
P\left(\bar{X}-z_{\alpha / 2} \frac{\sigma}{\sqrt{n}} \leq \mu \leq \bar{X}+z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}\right)=1-\alpha
$$

This gave us the $(1-\alpha) 100 \%$ confidence interval for μ defined by

$$
\bar{X} \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}
$$

We will follow similar steps in order to construct a confidence interval for σ^{2} based on S_{n}^{2}.

Sampling distribution of S_{n}^{2}

We need to know the sampling distribution of S_{n}^{2}, so that we can write a probability statement involving S_{n}^{2} and the unknown σ^{2} which we can rearrange to construct a confidence interval. We will use the following result on the sampling distribution of S_{n}^{2}.

Sampling distribution result: Sampling distribution result for S_{n}^{2}.

Let X_{1}, \ldots, X_{n} be a random sample from a Normal population with variance σ^{2} and let $S_{n}^{2}=(n-1)^{-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$. Then

$$
\frac{(n-1) S_{n}^{2}}{\sigma^{2}} \text { has the chi-squared distribution with degrees of freedom } n-1
$$

If a random variable W has the chi-squared distribution with degrees of freedom ν, then we write $W \sim \chi_{\nu}^{2}$.

What does the chi-squared distribution look like? There is a chi-squared distribution for every positive whole number $\nu=1,2,3, \ldots$, and the whole number with which a chi-squared distribution is associated is called its degrees of freedom. The chi-squared distributions are all right-skewed distributions. The probability density function of the χ_{ν}^{2} distribution is given by

$$
f(x)=\frac{1}{\Gamma(\nu / 2) 2^{\nu / 2}} x^{\nu / 2-1} \exp \left(-\frac{x}{2}\right), \quad x>0
$$

where $\Gamma(z)=\int_{0}^{\infty} u^{z-1} e^{-z} d z$ for $z>0$. The pdfs of the chi-squared distributions with degrees of freedom $\nu=1, \ldots, 8$ are plotted here:

Confidence interval for σ^{2}

In order to give an expression for a $(1-\alpha) 100 \%$ confidence interval for σ^{2}, we define, for any number $0<\xi<1$, the quantity $\chi_{\nu, \xi}^{2}$ to be the value such that

$$
P\left(W>\chi_{\nu, \xi}^{2}\right)=\xi
$$

where W is a random variable having the chi-squared distribution with degrees of freedom equal to ν. The value $\chi_{\nu, \xi}^{2}$ thus admits the depiction

Now we may write the probability statement

$$
P\left(\chi_{n-1,1-\alpha / 2}^{2} \leq \frac{(n-1) S_{n}^{2}}{\sigma^{2}} \leq \chi_{n-1, \alpha / 2}^{2}\right)=1-\alpha
$$

which corresponds to the picture

We can rearrange the previous probability statement to leave σ^{2} in the middle:

$$
P\left(\frac{(n-1) S_{n}^{2}}{\chi_{n-1, \alpha / 2}^{2}} \leq \sigma^{2} \leq \frac{(n-1) S_{n}^{2}}{\chi_{n-1,1-\alpha / 2}^{2}}\right)=1-\alpha .
$$

Thus, a $(1-\alpha) 100 \%$ confidence interval for σ^{2} is given by

$$
\left(\frac{(n-1) S_{n}^{2}}{\chi_{n-1, \alpha / 2}^{2}}, \frac{(n-1) S_{n}^{2}}{\chi_{n-1,1-\alpha / 2}^{2}}\right)
$$

Note that the interval is not "symmetric" around the estimator S_{n}^{2}, that is, it is not of the form $S_{n}^{2} \pm$ something. This is because the sampling distribution of S_{n}^{2} is not symmetric.

Loblolly pine trees example

Exercise. Using the data set Loblolly in R, which one can access by entering data (Loblolly) into the console, build a 95% confidence interval for the variance σ^{2} of the height of Loblolly pines which are ten years old.

Answer: Execute the command

$$
\mathrm{x} \text { <- Loblolly\$height [Loblolly\$age==10] }
$$

in R. This stores the desired values in the vector x. We can compute S_{n}^{2} by typing var (x), which gives $S_{n}^{2}=2.365095$.

To make sure the data are Normally distributed (which is necessary in order to construct a confidence interval based on a chi-squared distribution), we make a Normal QQ plot with the commands qqnorm (scale(x)) and abline (0,1). This produces the plot

The points in the plot deviate somewhat from a straight line, but it seems pretty safe to assume that the data have come from a Normal distribution.

The sample size is $n=14$, which we can get by entering length(x) into the console. The relevant chi-squared distribution is thus the chi-squared distribution with degrees of freedom equal to $14-1=13$. We can retrieve quantiles of the chi-squared distributions using the qchisq() function in R or by consulting the tables on pages 818 and 819 of the textbook. We find

$$
\chi_{13,975}^{2}=q \operatorname{chisq}(.025,13)=5.00874 \quad \text { and } \quad \chi_{13, .025}^{2}=\operatorname{qchisq}(.975,13)=24.7356
$$

A 95% confidence interval for σ^{2} is thus given by

$$
\left(\frac{(14-1) 2.365095}{24.7356}, \frac{(14-1) 2.365095}{5.00874}\right)=(1.242995,6.138517) .
$$

Where do the chi-squared distributions come from?

Let Z_{1}, \ldots, Z_{n} be a random sample from the $Z \sim \operatorname{Normal}(0,1)$ distribution. If we define

$$
W_{n}=Z_{1}^{2}+Z_{2}^{2}+\cdots+Z_{n}^{2}
$$

we find that $W_{n} \sim \chi_{n}^{2}$. We can write

$$
\begin{aligned}
\frac{(n-1) S_{n}^{2}}{\sigma^{2}} & =\frac{n-1}{n-1} \sum_{i=1}^{n} \frac{\left(X_{i}-\bar{X}\right)^{2}}{\sigma^{2}} \\
& =\left(\frac{X_{1}-\bar{X}}{\sigma}\right)^{2}+\left(\frac{X_{2}-\bar{X}}{\sigma}\right)^{2}+\cdots+\left(\frac{X_{n}-\bar{X}}{\sigma}\right)^{2},
\end{aligned}
$$

which looks a lot like a sum of Z values, just with μ replaced by \bar{X}. A theorem called Cochran's theorem can be used to conclude that the effect of having \bar{X} instead of μ is a reduction in the degrees of freedom by 1 . So

$$
\frac{(n-1) S_{n}^{2}}{\sigma^{2}} \sim \chi_{n-1}^{2}
$$

