STAT 515 Lec 14 slides

Hypothesis testing

Karl Gregory

University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture, definitions, plots, results, etc. which take too much time to write by hand on the blackboard. They are not intended to explain or expound on any material.

<ロ> (四) (四) (三) (三) (三)

A statistical inference is a conclusion about a pop. parameter based on a rs.

Specifically, a decision concerning contradictory statements about the parameter:

- The null hypothesis H_0 .
- The alternate hypothesis H_1 .

The decision is whether to

- Solution Reject H_0 , thereby concluding that H_1 is true.
- **2** Not reject H_0 , thereby not concluding anything.

A *test of hypotheses* is a rule for when to reject H_0 based on the data.

Exercise: We want to know whether a coin is unfair. Let p be the prob. of heads.

We want to test H_0 : p = 1/2 versus H_1 : $p \neq 1/2$ based on n = 100 coin tosses.

Discuss the following:

- Reject or fail to reject H_0 if 51 heads observed?
- **2** Reject or fail to reject H_0 if 60 heads observed?
- Solution Reject or fail to reject H_0 if 90 heads observed?
- Reject or fail to reject H_0 if 50 heads observed?
- Solution What possible evidence could convince us that p = 1/2?
- If the coin is fair, find prob. of observing a # of heads ≥ 60 or ≤ 40 .

イロト イロト イヨト イヨト 三日

Exercise: Is a treatment effective in lowering cholesterol levels? Let μ represent the average difference (after-minus-before treatment) in cholesterol levels.

We want to test H_0 : $\mu \ge 0$ versus H_1 : $\mu < 0$ with data from n = 100 subjects.

Discuss the following:

- Suppose we obtain $\bar{X}_n = 10.0$. Should we reject H_0 ?
- Solution What if we had observed \overline{X}_n equal to -10.0?
- If the changes in chol. level are N($\mu = 0, \sigma^2 = (25)^2$), find $P(\bar{X}_n < -10.0)$.

<ロト <回ト < 回ト < 回ト = 三日

Our data may lead us to an incorrect decision about H_0 and H_1 :

- A Type I error is rejecting H_0 when H_0 is true.
- A Type II error is failing to reject H_0 when H_0 is false.

We like to calibrate our tests of hypotheses such that $P(\text{Type I error}) \leq \alpha$.

Then we call α the significance level of the test.

Discuss: Table summarizing possible outcomes of inference.

イロト イロト イヨト イヨト

Introduction to hypothesis testing

2 Testing hypotheses about μ under Normality

3) Testing hypotheses about μ when data is not Normal

4 Testing hypotheses about p

イロト イヨト イヨト イヨト

Suppose $X_1, \ldots, X_n \stackrel{\text{ind}}{\sim} \text{Normal}(\mu, \sigma^2)$, with μ and σ^2 unknown.

We will consider null and alternate hypotheses of the form

$H_0: \mu \ge \mu_0$	or	$H_0: \mu = \mu_0$	or	H_0 : $\mu \leq \mu_0$
$H_1: \mu < \mu_0$		H_1 : $\mu eq \mu_0$		$H_1: \mu > \mu_0.$

Here μ_0 is a value specified by the researcher called the *null value*.

Exercise: For each set of hypotheses, find a test based on the test statistic

$$\frac{\bar{X}_n - \mu_0}{S_n / \sqrt{n}}$$

with $P(\text{Type I error}) \leq \alpha$.

イロト イロト イヨト イヨト 三日

Let $X_1, \ldots, X_n \stackrel{\text{ind}}{\sim} \text{Normal}(\mu, \sigma^2)$, with μ and σ^2 unknown.

Tests about μ when σ is unknown

For some null value μ_0 , define the test statistic

$$T_{
m test} = rac{ar{X} - \mu_0}{S_n/\sqrt{n}}.$$

Then the following tests have $P(\text{Type I error}) \leq \alpha$.

$egin{array}{ll} \mathcal{H}_{0}\colon\mu\geq\mu_{0}\ \mathcal{H}_{1}\colon\mu<\mu_{0} \end{array}$	$egin{array}{ll} H_0\colon \mu=\mu_0\ H_1\colon \mu eq\mu_0 \end{array}$	$egin{array}{ll} \mathcal{H}_0\colon\mu\leq\mu_0\ \mathcal{H}_1\colon\mu>\mu_0\ \mathcal{H}_1\colon\mu>\mu_0 \end{array}$
$egin{array}{l} {\sf Reject} \; {\cal H}_{\sf 0} \; {\sf if} \ {\cal T}_{{\sf test}} < -t_{n-1,lpha} \end{array}$	Reject H_0 if $ T_{test} > t_{n-1, \alpha/2}$	Reject H_0 if $\mathcal{T}_{test} > t_{n-1,lpha}$

<ロ> (四) (四) (三) (三) (三) 三目

Exercise: Suppose a bottler of soft-drinks claims that its bottling process results in an internal pressure of 157 psi. You want to know whether the mean pressure is less than 157 (Ex 6.92 in [1]).

- What are the relevant hypotheses?
- **②** Based on a sample of size n = 30 you get $\overline{X} = 155.7$ and $S_n = 3.0$. What is your inference at the $\alpha = 0.05$ significance level?
- Identify the following as a correct decision, a Type I error, or a Type II error:
 - a. Suppose $\mu = 157.5$ and your data leads you to reject H_0 .
 - b. Suppose $\mu = 157.5$ and your data leads you to not reject H_0 .
 - c. Suppose $\mu = 156.5$ and your data leads you to reject H_0 .
 - d. Suppose $\mu = 156.5$ and your data leads you to not reject H_0 .

・ロト ・聞ト ・ヨト ・ヨト

Exercise: The average height of 14 randomly selected ten-yr-old Loblolly pine trees was $\bar{X}_n = 27.44$ and the sample standard deviation was $S_n = 1.54$. Assume that the heights of ten-yr-old Loblolly pine trees are Normally distributed.

- Test the hypotheses H_0 : $\mu \leq 26$ versus H_1 : $\mu > 26$ at $\alpha = 0.05$.
- **②** Test the hypotheses H_0 : $\mu \ge 26$ versus H_1 : $\mu < 26$ at $\alpha = 0.05$.
- Test the hypotheses H_0 : $\mu = 26$ versus H_1 : $\mu \neq 26$ at $\alpha = 0.05$.
- Build a 95% CI for μ .

イロト 不得下 イヨト イヨト 二日

For two-sided tests at α , just see if $(1 - \alpha)100\%$ CI contains the null value!

For H_0 : $\mu = \mu_0$ versus H_1 : $\mu \neq \mu_0$ we have:

$$|T_{\text{test}}| > t_{n-1,\alpha/2} \iff \mu_0 \notin \left(\bar{X}_n - t_{n-1,\alpha/2} \frac{S_n}{\sqrt{n}}, \bar{X}_n + t_{n-1,\alpha/2} \frac{S_n}{\sqrt{n}}\right).$$

2

イロト イポト イヨト イヨト

Introduction to hypothesis testing

2) Testing hypotheses about μ under Normality

3 Testing hypotheses about μ when data is not Normal

4 Testing hypotheses about p

イロン イロン イヨン イヨン

Since $\sqrt{n}(\bar{X}_n - \mu)/S_n$ behaves like $Z \sim \text{Normal}(0, 1)$ for large $n \dots$

Tests about μ when data non-Normal and $n \ge 30$

For some null value μ_0 , define the test statistic

$$T_{
m test} = rac{ar{X} - \mu_0}{S_n/\sqrt{n}}$$

Then the following tests have $P(\text{Type I error}) \leq \alpha$.

$egin{array}{ll} H_0\colon\mu\geq\mu_0\ H_1\colon\mu<\mu_0 \end{array}$	$egin{array}{ll} H_0\colon \mu=\mu_0\ H_1\colon \mu eq\mu_0 \end{array}$	$H_0: \mu \leq \mu_0$ $H_1: \mu > \mu_0$
Reject H_0 if ${\cal T}_{{ m test}} < -z_lpha$	Reject H_0 if $ \mathcal{T}_{test} > z_{lpha/2}$	Reject H_0 if $T_{ ext{test}} > z_lpha$

イロト イロト イヨト イヨト 三日

Time allowing:

Oraw a random sample of size n = 35 from the 2009 Boston Marathon women's finishing times and test the hypotheses

 $H_0: \mu \leq 4$ versus $H_1: \mu > 4$

at the $\alpha = 0.05$ significance level.

Separate this 1000 times and record the proportion of times you reject H_0 .

3

イロト イヨト イヨト イヨト

Introduction to hypothesis testing

2) Testing hypotheses about μ under Normality

3) Testing hypotheses about μ when data is not Normal

Testing hypotheses about p

イロン イロン イヨン イヨン

Since $\sqrt{n}(\hat{p}_n - p)/\sqrt{p(1-p)}$ behaves like $Z \sim \text{Normal}(0,1)$ for large $n \dots$

Tests about p (for $np_0 \ge 15$ and $n(1 - p_0) \ge 15$)

For some null value μ_0 , define the test statistic

$$Z_{ ext{test}} = rac{\hat{
ho}_n -
ho_0}{\sqrt{rac{
ho_0(1-
ho_0)}{n}}}$$

Then the following tests have $P(\text{Type I error}) \leq \alpha$.

<ロ> (四) (四) (注) (三) (三)

Exercise: Does a female-inhabiting parasite tip the sex ratio of its hosts' offspring in favor of females? A sample of size n = 500 offspring from parasite-infected females is collected, among which there are 287 females.

- What are the relevant hypotheses?
- **②** Carry out a test of the hypotheses at the $\alpha = 0.05$ significance level.
- Identify the following as a correct decision, a Type I error, or a Type II error:
 - a. Suppose p = 0.60 and your data leads you to reject H_0 .
 - b. Suppose p = 0.60 and your data leads you to not reject H_0 .
 - c. Suppose p = 0.50 and your data leads you to reject H_0 .
 - d. Suppose p = 0.50 and your data leads you to not reject H_0 .

Exercise: In a tasting experiment, each o 121 blindfolded students was fed either a red or green gummy bear, (each with probability 1/2) and asked to identify the color from the taste. Of the 121, 97 correctly identified the color(Ex. 8.82 of [1]).

- If the students guessed "red" or "green" based on flipping a coin, with what probability would they guess the color correctly?
- Suppose you wish to know if the students are doing better or worse than guessing. What are the relevant hypotheses?
- **③** Test the hypotheses at the $\alpha = 0.01$ significance level.

・ロト ・四ト ・ヨト ・ヨト

2

<ロ> (四) (四) (三) (三) (三)