Statistical Interne mans: hermit for dit abet the population or the proves genentig the data
STAT 515 Lee 14 slides
Confidence notervols

Hypothesis tatry Hypothesis testing

Karl Gregory

University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture, definitions, plots, results, etc. which take too much time to write by hand on the blackboard. They are not intended to explain or expound on any material.
ques nev ada ten her！
（f）If the true proportion of drones in the hive were equal to 0.15 ，with what probability would the beekeeper obtain 40 or more drones in her scoop of 294 bees？
i．Compute this probability exactly，assuming that there are 30,000 bees in the hive．
ii．Compute this probability ignoring the fact that she is sampling without replacement． （iii．Compute an approximation to this probability using the Normal distribution．
i）$X=$ 牛 drones in sample \sim Hyperjeomentire $(N=30,000, M=4500, K=294)$

$$
\begin{aligned}
P(x \geqslant 40) & =1-P(x<40) \\
& =1-P(x \leq 39) \\
& =1-\operatorname{phyper}(39
\end{aligned}
$$

$$
\begin{aligned}
& P(X=x)=\frac{\binom{4500}{x}\binom{30,000-4500}{294-x}}{\binom{30000}{297}} \\
& \text { ii) } X \sim B=n 00 \times 1 \quad(n=294, \quad p=0.15) \\
& P(X \geqslant 40)=1-P(X \leq 39)=1-p \operatorname{hinom}(39,254,0.15)
\end{aligned}
$$

$r^{ \pm} \ldots$

$$
n=294
$$

iii) $X: \widetilde{n}_{\hat{p}_{n}}^{\sim} \stackrel{\operatorname{arrox}}{\sim} N(n p, \quad n p(1-p))$

$$
X \stackrel{\text { anprox }}{\sim} N(\underbrace{294 \cdot 0.15}_{\mu}, \frac{294 \cdot 0.15(1-0.15)}{\sigma^{2}})
$$

$$
P(x \geq 40)
$$

Statistal infernace about μ and p
H_{0}
H_{1}
n.ll hypotheres
altemate hypothesis
(1) Rejet H
(2) Fail to reject H_{0}.

μ_{0}
$H_{0}: \mu \geqslant \mu_{0}$
$H_{0}: \mu=\mu_{0}$
$H_{0}: \mu \leq \mu_{0}$
$H_{1}: \mu<\mu \nu$
$H_{1}: \mu \neq \mu_{0}$
$H_{1}: \mu>\mu_{0}$

A statistical inference is a conclusion about a pop. parameter based on arr.)
Specifically, a decision concerning contradictory statements about the parameter:

- The null hypothesis H_{0}.
- The alternate hypothesis H_{1}.

The decision is whether to
(1) Reject H_{0}, thereby concluding that H_{1} is true.
(2) Not reject H_{0}, thereby not concluding anything.

A test of hypotheses is a rule for when to reject H_{0} based on the data.

Exercise: We want to know whether a coin is unfair. Let p be the prob. of heads.
We want to test

$$
H_{0}: p=1 / 2 \text { versus } H_{1}: p \neq 1 / 2
$$

Suppose we toss the coin 100 times. Discuss the following:
(1) Reject or fail to reject H_{0} if 51 heads observed?
(2) Reject or fail to reject H_{0} if 60 heads observed?
(3) Reject or fail to reject H_{0} if 90 heads observed?
(1) Reject or fail to reject H_{0} if 50 heads observed?
(1) Reject H_{0}
(2) Fill t Resat Ho.
(3) Resat $\begin{array}{lll}H_{1} & \text { all } \\ \text { Candid } & H_{0} \text { ? }\end{array}$
(0) What possible evidence could convince us that $p=1 / 2$?
(- If the coin is fair, find prob. of observing a $\#$ of heads ≥ 60 or ≤ 40.

Exercise: Is a treatment effective in lowering cholesterol levels? Let μ represent the average difference (after-minus-before treatment) in cholesterol levels.

We want to test

$$
H_{0}: \mu \geq 0 \text { versus } H_{1}: \mu<0 .
$$

Suppose we obtain $\bar{X}_{n}=10.0$ from $n=100$ subjects. Discuss the following:
(1) Reject or fail to reject H_{0} ?
(2) What if we had observed \bar{X}_{n} equal to -10.0 ?
(3) If the changes in chol. level are $\mathrm{N}\left(\mu=0, \sigma^{2}=(25)^{2}\right)$, find $P\left(\bar{X}_{n}<-10.0\right)$.

Our data may lead us to an incorrect decision about H_{0} and H_{1} :

- A Type I error is rejecting H_{0} when H_{0} is true.
- A Type II error is failing to reject H_{0} when H_{0} is false.

Make table summarizing possible outcomes of inference.
We like to calibrate our tests of hypotheses such that P (Type I error $) \leq \alpha$.
Then we call α the significance level of the test.

Truth

Ho true
H_{0} false

INFERENCE

Now:
Calibrate tests of hypotheses s. that

$$
P\left(T_{y p} I\right) \leq \alpha
$$

(1) Introduction to hypothesis testing

(2) Testing hypotheses about μ under Normality
(3) Testing hypotheses about μ when data is not Normal

4 Testing hypotheses about p

Suppose $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Normal}\left(\mu, \sigma^{2}\right)$, with σ unknown.

\uparrow
 unknoun

We will consider null and alternate hypotheses of the form

Here μ_{0} is a value specified by the researcher called the null value.
Exercise: For each set of hypotheses, find a test based on the test statistic

$$
\frac{\bar{X}_{n}-\mu_{0}}{S_{n} / \sqrt{n}}
$$

with $P($ Type I error $) \leq \alpha$.

Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Normal}\left(\mu, \sigma^{2}\right), \sigma^{2}$ unknown.

Tests about μ when σ is unknown
For some null value μ_{0}, define the test statistic

$$
T_{\text {test }}=\frac{\bar{X}-\mu_{0}}{S_{n} / \sqrt{n}} .
$$

Then the following tests have P (Type I error $) \leq \alpha$.

$$
\begin{aligned}
& H_{0}: \mu \geq \mu_{0} \\
& H_{1}: \mu<\mu_{0}
\end{aligned}
$$

Reject H_{0} if
$\overbrace{\text { test }}^{T_{\text {te }}}<-t_{n-1, \alpha}$

Exercise: Suppose a bottler of soft-drinks claims that its bottling process results in an internal pressure of 157 psi. You want to know whether the mean pressure is less than 157 (Ex 6.92 in [1]).
(1) What are the relevant hypotheses?
(2) Based on a sample of size $n=30$ you get $\bar{X}_{n}=155.7$ and $S_{n}=3.0$. What is your inference at the $\alpha=0.05$ significance level?
(3) Identify the following as a correct decision, a Type I error, or a Type II error:
a. Suppose $\mu=157.5$ and your data leads you to reject H_{0}. Type I.
b. Suppose $\mu=157.5$ and your data leads you to not reject H_{0}. Corrut.
c. Suppose $\mu=156.5$ and your data leads you to reject H_{0}. Cornet .
d. Suppose $\mu=156.5$ and your data leads you to not reject H_{0}. Type rI error .

Re, t H_{0} if $\frac{\bar{x}_{n}-\mu_{0}}{s / \sqrt{n}}<-t_{n-1, \alpha / 2}$ or $\frac{\bar{x}_{n}-\mu_{n}}{s_{n} / r_{n}}>t_{n-1, d / 2}$
(4) $\bar{x}_{n} \pm t_{n-1, \alpha / 2} \frac{s_{n}}{\sqrt{n}}=27.44 \pm \underbrace{t_{14-1, \frac{0.05}{2}}}_{2.1604} \frac{1.54}{\sqrt{14}}=(\underline{26.61,28.27})$

Exercise: The average height of 14 randomly selected ten-yr-old Loblolly pine trees was $\bar{X}_{n}=27.44$ and the sample standard deviation was $S_{n}=1.54$. Assume that the heights of ten-yr-old Loblolly pine trees are Normally distributed.

Test the hypotheses $H_{0}: \mu \leq 26$ versus $H_{1}: \mu>26$ at $\alpha=0.05$.
Test the hypotheses $H_{0}: \mu \geq 26$ versus $H_{1}: \mu<26$ at $\alpha=0.05$.
Test the hypotheses $H_{0}: \mu=26$ versus $H_{1}: \mu \neq 26$ at $\alpha=0.05$.
Build a $95 \% \mathrm{Cl}$ for μ.
(1) $\bar{x}_{n}=27.14, S_{n}=1.54, \quad n=14 \quad \alpha=0.05$.

Test $H_{\mu_{0}: ~}^{H_{1} \leq 26}$ wo $H_{i}: \mu>26$.

Reject H_{0} if $T_{\text {st,t }}=\frac{\bar{x}_{n}-\mu_{0}}{s_{n} / \sqrt{n}}>t_{n-1, \alpha}$

Yes, rejut.
(2)

$$
\begin{aligned}
& H_{0}: \mu \geqslant 26 \\
& H_{1}: \mu<26
\end{aligned}
$$

$$
\bar{X}_{n}=29.44
$$

(B) $H_{0}: \mu=26$ is $H_{1}: \mu \neq 26$ (Two-sided hypothesex)

Rejat U. if $T_{\text {tat }}=\frac{\bar{x}_{n}-\mu_{0}}{S_{n} / /_{n}}>t_{n-1, a / 2}$

For two-sided tests at α, just see if $(1-\alpha) 100 \% \mathrm{Cl}$ contains the null value!

For $H_{0}: \mu=\mu_{0}$ versus $H_{1}: \mu \neq \mu_{0}$ we have:

$$
\left|T_{\text {test }}\right|>t_{n-1, \alpha / 2} \Longleftrightarrow \mu_{0} \notin\left(\bar{X}_{n}-t_{n-1, \alpha / 2} \frac{S_{n}}{\sqrt{n}}, \bar{X}_{n}+t_{n-1, \alpha / 2} \frac{S_{n}}{\sqrt{n}}\right) .
$$

(1) Reject H_{0} if $\left|T_{\text {test }}\right|>t_{n-1, d / 2}$ \Leftrightarrow
(2) Rout H_{0} it μ_{0} is $n_{n 0 t}$ in the C.I. $\bar{x}_{n} \pm t_{n-1,1 / 2} \frac{s_{n}}{\bar{m}_{1}}$

(1) Introduction to hypothesis testing

(2) Testing hypotheses about μ under Normality
(3) Testing hypotheses about μ when data is not Normal

4 Testing hypotheses about p

Since $\sqrt{n}\left(\bar{X}_{n}-\mu\right) / S_{n}$ behaves like $Z \sim \operatorname{Normal}(0,1)$ for large $n \ldots$

Tests about μ when data non-Normal and $n \geq 30$

For some null value μ_{0}, define the test statistic

$$
T_{\text {test }}=\frac{\bar{X}_{n}-\mu_{0}}{S_{n} / \sqrt{n}} .
$$

Then the following tests have P (Type I error) $\leq \alpha$.

$H_{0}: \mu \geq \mu_{0}$	$H_{0}: \mu=\mu_{0}$	$H_{0}: \mu \leq \mu_{0}$
$H_{1}: \mu<\mu_{0}$	$H_{1}: \mu \neq \mu_{0}$	$H_{1}: \mu>\mu_{0}$
Reject H_{0} if	Reject H_{0} if	Reject H_{0} if
$T_{\text {test }}<-z_{\alpha}$	$\left\|T_{\text {test }}\right\|>z_{\alpha / 2}$	$T_{\text {test }}>z_{\alpha}$

Exercise:

(1) Draw a random sample of size $n=35$ from the 2009 Boston Marathon women's finishing times and test the hypotheses

$$
H_{0}: \mu \leq 4 \text { versus } H_{1}: \mu>4
$$

at the $\alpha=0.05$ significance level.
(2) Repeat this 1000 times and record the proportion of times you reject H_{0}.

(1) Introduction to hypothesis testing

(2) Testing hypotheses about μ under Normality
(3) Testing hypotheses about μ when data is not Normal
$p=$ proportion of $1^{\prime} s$
(4) Testing hypotheses about p

$H_{0}: p \geqslant p_{0}$
$H_{0}: p=p_{0}$
$H_{0}: p<p_{0}$
$H_{1}: p<p_{0}$
$H_{1}: p \neq p_{0}$
g
null value

Ak: how for is $\hat{\phi}_{n}$ from do?
send th: int the z world.
"Test statarku"

$$
z_{\text {test }}=\frac{\hat{p}_{n}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}} \stackrel{\text { approx }}{\sim} N(0,1)
$$

Rejat H_{0} is $Z_{\text {tat }}<Z_{\alpha}$
$H_{0}: \quad p=p_{0}$
$H_{1}: p \neq p_{0}$

Rejat H_{0} if
$\left|z_{\text {tat }}\right|>z_{\alpha / 2}$

$$
H_{0}: p \leq p_{0}
$$

$H_{1}: \quad p>p_{0}$

Regt Ho if $z_{\text {test }}>z_{\alpha}$

Since $\sqrt{n}\left(\hat{p}_{n}-p\right) / \sqrt{p(1-p)}$ behaves like $Z \sim \operatorname{Normal}(0,1)$ for large $n \ldots$

For some null value μ_{0}, define the test statistic

$$
Z_{\text {test }}=\frac{\hat{p}_{n}-p_{0}}{\sqrt{\frac{p_{0}\left(1-p_{0}\right)}{n}}}
$$

Then the following tests have P (Type I error) $\leq \alpha$.

$$
\begin{array}{c|c|c}
H_{0}: p \geq p_{0} & H_{0}: p=p_{0} & H_{0}: p \leq p_{0} \\
H_{1}: p<p_{0} & H_{1}: p \neq p_{0} & \\
\text { Reject } H_{0} \text { if } Z_{\text {test }}<-z_{\alpha} & \text { Reject } H_{0} \text { if }\left|Z_{\text {test }}\right|>z_{\alpha / 2} & \text { Reject } H_{0} \text { if } Z_{\text {test }}>z_{\alpha}
\end{array}
$$

Let $p=$ pro. of fumbles in offering

Exercise: Does a female-inhabiting parasite tip the sex ratio of its hosts' offspring in favor of females? A sample of size $n=500$ offspring from parasite-infected females is collected, among which there are 287 females.
(1) What are the relevant hypotheses?

$$
H_{0}: p \leq \frac{1}{2}
$$

$$
H_{1}: p>\frac{1}{2}
$$

(2) Carry out a test of the hypotheses at the $\alpha=0.05$ significance level. Reject H_{0}.
(3) Identify the following as a correct decision, a Type I error, or a Type II error:
a. Suppose $p=0.60$ and your data leads you to reject H_{0}.

Corrut
b. Suppose $p=0.60$ and your data leads you to not reject H_{0}. Type II
c. Suppose $p=0.50$ and your data leads you to reject H_{0}. Ty m エ
d. Suppose $p=0.50$ and your data leads you to not reject H_{0}. Cornet .
(2)

$$
n=500 \quad \hat{p}_{n}=\frac{287}{500}
$$

$$
\begin{aligned}
z_{\text {test }} & =\frac{\frac{287}{500}-\frac{1}{2}}{\sqrt{\frac{\frac{1}{2}\left(1-\frac{1}{2}\right)}{500}}} \\
& =3.31
\end{aligned}
$$

Exercise: In a tasting experiment, each of 121 blindfolded students was fed either a red or green gummy bear, (each with probability $1 / 2$) and asked to identify the color from the taste. Of the 121, 97 correctly identified the color(Ex. 8.82 of [1]).
(1) If the students guessed "red" or "green" based on flipping a coin, with what probability would they guess the color correctly? $1 / 2$
(2) Suppose you wish to know if the students are doing better or worse than guessing. What are the relevant hypotheses?
(3) Test the hypotheses at the $\alpha=0.01$ significance level.
(2) $H_{0}: p=\frac{1}{2}$ is $H_{1}: \quad p \neq \frac{1}{2}$
(3) $n=121, \quad \hat{p}_{n}=\frac{97}{121}, \quad p_{0}=\frac{1}{2}$

围 J.T. McClave and T.T. Sincich. Statistics.
Pearson Education, 2016.

