

Karl Gregory

University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture, definitions, plots, results, etc. which take too much time to write by hand on the blackboard. They are not intended to explain or expound on any material.

- (f) If the true proportion of drones in the hive were equal to 0.15, with what probability would the beekeeper obtain 40 or more drones in her scoop of 294 bees?
 - i. Compute this probability exactly, assuming that there are 30,000 bees in the hive.
 - ii. Compute this probability ignoring the fact that she is sampling without replacement.

(iii) Compute an approximation to this probability using the Normal distribution.

$$P\left(x=x\right) = \frac{\binom{4500}{\pi} \binom{30,000-4560}{294-x}}{\binom{30,000}{294}}$$

iii)
$$X: np_n \sim N(np, np(1-p))$$
 $n=294$
 $p=0.1$

$$\times \sim N\left(294.0.15, 294.0.15(1-0.15)\right)$$
 $P(\times 3.40)$

- 1) Rejust H.
- (2) Fill to reject the.

H: n= po

Ho: n= ho

Hi: nt no

Hoi n = no

Hi. n=no

n or P gandom le

A statistical inference is a conclusion about a pop. parameter based on a rs.

Specifically, a decision concerning contradictory statements about the parameter:

- The *null hypothesis* H_0 .
- The alternate hypothesis H_1 .

The decision is whether to

- \bigcirc Reject H_0 , thereby concluding that H_1 is true.
- \bigcirc Not reject H_0 , thereby not concluding anything.

A test of hypotheses is a rule for when to reject H_0 based on the data.

Exercise: We want to know whether a coin is unfair. Let *p* be the prob. of heads.

We want to test

$$H_0$$
: $p = 1/2$ versus H_1 : $p \neq 1/2$.

Suppose we toss the coin 100 times. Discuss the following:

- Reject or fail to reject H_0 if 51 heads observed?
- 2 Reject or fail to reject H_0 if 60 heads observed?
- \odot Reject or fail to reject H_0 if 90 heads observed?
- Reject or fail to reject H_0 if 50 heads observed?
- What possible evidence could convince us that p = 1/2?
- **o** If the coin is fair, find prob. of observing a # of heads \geq 60 or \leq 40.

Exercise: Is a treatment effective in lowering cholesterol levels? Let μ represent the average difference (after-minus-before treatment) in cholesterol levels.

We want to test

$$H_0$$
: $\mu \ge 0$ versus H_1 : $\mu < 0$.

Suppose we obtain $\bar{X}_n = 10.0$ from n = 100 subjects. Discuss the following:

- Reject or fail to reject H_0 ?
- ② What if we had observed \bar{X}_n equal to -10.0?
- 3 If the changes in chol. level are $N(\mu = 0, \sigma^2 = (25)^2)$, find $P(\bar{X}_n < -10.0)$.

Our data may lead us to an incorrect decision about H_0 and H_1 :

- A Type I error is rejecting H_0 when H_0 is true.
- A Type II error is failing to reject H_0 when H_0 is false.

Make table summarizing possible outcomes of inference.

We like to calibrate our tests of hypotheses such that $P(\text{Type I error}) \leq \alpha$.

Then we call α the significance level of the test.

TOPERENCE

Rejut Ho Type I Correct decision

Correct Type II

Correct Type II

decision

Now: Calibrate tests of hypotheses so Hat P(Type I) = d. Introduction to hypothesis testing

- 2 Testing hypotheses about μ under Normality

Testing hypotheses about p

Suppose
$$X_1, \ldots, X_n \stackrel{\text{ind}}{\sim} \text{Normal}(\mu, \sigma^2)$$
, with σ unknown.

We will consider null and alternate hypotheses of the form

$$H_0: \mu \ge \mu_0$$
 or $H_0: \mu = \mu_0$ or $H_0: \mu \le \mu_0$
 $H_1: \mu < \mu_0$ or $H_1: \mu > \mu_0$.

Here μ_0 is a value specified by the researcher called the <u>null value</u>.

Exercise: For each set of hypotheses, find a test based on the test statistic

$$rac{ar{X}_n - \mu_0}{S_n/\sqrt{n}}$$

with $P(\mathsf{Type}\;\mathsf{I}\;\mathsf{error}) \leq \alpha$.

Let $X_1, \ldots, X_n \stackrel{\text{ind}}{\sim} \text{Normal}(\mu, \sigma^2)$, σ^2 unknown.

Tests about μ when σ is unknown

For some null value μ_0 , define the test statistic

$$T_{
m test} = rac{ar{X} - \mu_0}{S_n/\sqrt{n}}.$$

Then the following tests have $P(\text{Type I error}) \leq \alpha$.

$$H_0: \mu \ge \mu_0$$

 $H_1: \mu < \mu_0$

Reject
$$H_0$$
 if $T_{\mathrm{test}} < -t_{n-1,\alpha}$

Two sided hypotheses
$$H_0$$
: $\mu = \mu_0$ H_1 : $\mu \neq \mu_0$

Reject
$$H_0$$
 if $|T_{\text{test}}| > t_{n-1,\alpha/2}$

$$H_0: \mu \leq \mu_0$$

 $H_1: \mu > \mu_0$

Reject
$$H_0$$
 if $T_{\mathsf{test}} > t_{n-1,\alpha}$

Exercise: Suppose a bottler of soft-drinks claims that its bottling process results in an internal pressure of 157 psi. You want to know whether the mean pressure is less than 157 (Ex 6.92 in [1]).

- What are the relevant hypotheses?
- ② Based on a sample of size n = 3 you get $\bar{X} = 155.7$ and $S_n = 3.0$. What is your inference at the $\alpha = 0.05$ significance level?
- Identify the following as a correct decision, a Type I error, or a Type II error:
 - a. Suppose $\mu=157.5$ and your data leads you to reject H_0 .
 - b. Suppose $\mu = 157.5$ and your data leads you to not reject H_0 . Correct.
 - c. Suppose $\mu = 156.5$ and your data leads you to reject H_0 . Cornel.
 - d. Suppose $\mu=156.5$ and your data leads you to not reject H_0 . Type Π error.

Exercise: The average height of 14 randomly selected ten-yr-old Loblolly pine trees was $\bar{X}_n = 27.44$ and the sample standard deviation was $S_n = 1.54$. Assume that the heights of ten-yr-old Loblolly pine trees are Normally distributed.

- fest the hypotheses H_0 : $\mu \leq 26$ versus H_1 : $\mu > 26$ at $\alpha = 0.05$.
- Test the hypotheses H_0 : $\mu \geq 26$ versus H_1 : $\mu < 26$ at $\alpha = 0.05$.
 - Test the hypotheses H_0 : $\mu = 26$ versus H_1 : $\mu \neq 26$ at $\alpha = 0.05$.
- $lue{4}$ Build a 95% CI for μ .

◀□▶ ◀圖▶ ◀불▶ 불

Yes, reject.

Ho:
$$\mu = 26$$

Hi: $\mu = 26$
 $X_n = 29.49$

Fil to reject to. Dita support to, so me don't need to do say thing.

(B)
$$H_0: \mu = 26$$
 vs $H_1: \mu \neq 26$ (Two-sided hypotheses)
$$\mu_0=26 \qquad \overline{X}_n=27.49$$

For two-sided tests at α , just see if $(1 - \alpha)100\%$ CI contains the null value!

For H_0 : $\mu = \mu_0$ versus H_1 : $\mu \neq \mu_0$ we have:

$$|T_{\mathrm{test}}| > t_{n-1,\alpha/2} \iff \mu_0 \notin \left(\bar{X}_n - t_{n-1,\alpha/2} \frac{S_n}{\sqrt{n}}, \bar{X}_n + t_{n-1,\alpha/2} \frac{S_n}{\sqrt{n}} \right).$$

Peject Ho if $|T_{\mathrm{test}}| > t_{n-1,\alpha/2}$

Introduction to hypothesis testing

2 Testing hypotheses about μ under Normality

lacksquare Testing hypotheses about μ when data is not Normal

Testing hypotheses about p

Since $\sqrt{n}(\bar{X}_n - \mu)/S_n$ behaves like $Z \sim \text{Normal}(0, 1)$ for large n...

Tests about μ when data non-Normal and $n \ge 30$

For some null value μ_0 , define the test statistic

$$T_{\mathrm{test}} = rac{ar{X}_{n} - \mu_{0}}{S_{n} / \sqrt{n}}.$$

Then the following tests have $P(\text{Type I error}) \leq \alpha$.

$$H_0: \mu \ge \mu_0$$

 $H_1: \mu < \mu_0$

Reject
$$H_0$$
 if $T_{\mathrm{test}} < -z_{\alpha}$

$$H_0: \mu = \mu_0$$

 $H_1: \mu \neq \mu_0$

Reject
$$H_0$$
 if $|T_{\text{test}}| > z_{\alpha/2}$

$$H_0: \mu \leq \mu_0$$

 $H_1: \mu > \mu_0$

Reject
$$H_0$$
 if $T_{\rm test} > z_{\alpha}$

Exercise:

① Draw a random sample of size n=35 from the 2009 Boston Marathon women's finishing times and test the hypotheses

$$H_0$$
: $\mu \le 4$ versus H_1 : $\mu > 4$

at the $\alpha = 0.05$ significance level.

2 Repeat this 1000 times and record the proportion of times you reject H_0 .

Introduction to hypothesis testing

2 Testing hypotheses about μ under Normality

- $oxed{3}$ Testing hypotheses about μ when data is not Normal
- \bigcirc Testing hypotheses about p

Since
$$\sqrt{n}(\hat{p}_n - p)/\sqrt{p(1-p)}$$
 behaves like $Z \sim \text{Normal}(0,1)$ for large n ...

Tests about
$$p$$
 (for $np_0 \ge 15$ and $n(1-p_0) \ge 15$) the effect.

For some null value μ_0 , define the test statistic

$$Z_{ ext{test}} = rac{\hat{p}_n - p_0}{\sqrt{rac{p_0(1-p_0)}{n}}}.$$

Then the following tests have $P(\text{Type I error}) \leq \alpha$.

$$H_0: p \ge p_0$$

 $H_1: p < p_0$

Reject
$$H_0$$
 if $Z_{ ext{test}} < -z_{lpha}$

$$H_0$$
: $p = p_0$
 H_1 : $p \neq p_0$

Reject
$$H_0$$
 if $Z_{\text{test}} < -z_{\alpha}$ Reject H_0 if $|Z_{\text{test}}| > z_{\alpha/2}$

$$H_0$$
: $p \le p_0$
 H_1 : $p > p_0$

Reject
$$H_0$$
 if $Z_{\text{test}} > z_{\alpha}$

Exercise: Does a female-inhabiting parasite tip the sex ratio of its hosts' offspring in favor of females? A sample of size n = 500 offspring from parasite-infected females is collected, among which there are 287 females.

- What are the relevant hypotheses? Ho: P = ½
- 2 Carry out a test of the hypotheses at the $\alpha=0.05$ significance level. Figure H_s.
- Identify the following as a correct decision, a Type I error, or a Type II error:
 - a. Suppose p = 0.60 and your data leads you to reject H_0 .
 - b. Suppose p = 0.60 and your data leads you to not reject H_0 . Type \blacksquare
 - c. Suppose p = 0.50 and your data leads you to reject H_0 .
 - d. Suppose p = 0.50 and your data leads you to not reject H_0 . Cornel.

$$Z_{\mathsf{test}} = rac{\hat{
ho}_n -
ho_0}{\sqrt{rac{
ho_0(1-
ho_0)}{n}}}.$$

$$\begin{array}{c|c}
\hline
 & 1 \\
\hline
 & 2 \\
\hline
 & 540
\end{array}$$

Exercise: In a tasting experiment, each of 121 blindfolded students was fed either a red or green gummy bear, (each with probability 1/2) and asked to identify the color from the taste. Of the 121, 97 correctly identified the color(Ex. 8.82 of [1]).

- If the students guessed "red" or "green" based on flipping a coin, with what probability would they guess the color correctly? 1/2
- Suppose you wish to know if the students are doing better or worse than guessing. What are the relevant hypotheses?
- 3 Test the hypotheses at the $\alpha = 0.01$ significance level.

$$n = 121$$

$$n = 121$$
, $\hat{P}_n = \frac{97}{121}$,

$$\frac{2}{2} + \frac{1}{121} = \frac{1}{2} = \frac{1}{121} - \frac{1}{2} = \frac{1}{121} = \frac{1}{2} = \frac{1}{2} = \frac{1}{121} = \frac{1}{2} = \frac{1}{2$$

J.T. McClave and T.T. Sincich. *Statistics*.

Pearson Education, 2016.