STAT 515 Lec 15 slides

p-values

Karl Gregory

University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture, definitions, plots, results, etc. which take too much time to write by hand on the blackboard. They are not intended to explain or expound on any material.

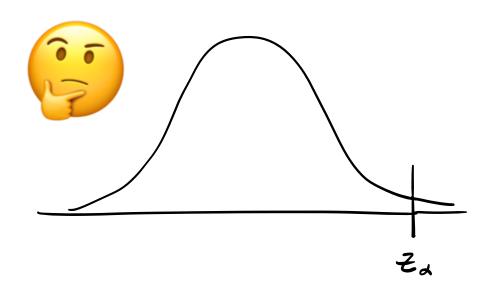
▲□▶ ▲圖▶ ▲필▶ ▲필▶ - 필.

Discuss: Consider the case of Vinaya and her younger brother Anuj, who wish to test H_0 vs H_1 . Each gathers data, and

- Anuj rejects H_0 based on a test with significance level $\alpha = 0.10$ and
- Vinaya rejects H_0 based on a test with significance level $\alpha = 0.01$.

Whose result is more "significant"?

Vinya.



At what significance levels would the observed data lead to a rejection of H_0 ?

This is a way to measure the strength of observed evidence against H_0 .

The p-value

The smallest significance level α at which the observed data would lead to a rejection of H_0 is called the *p*-value.

Interpretion: Probability (under H_0) of observing data that carry as much or more evidence against the null as the data observed.

Once we have the *p*-value, we reject H_0 if *p*-value $< \alpha$.

Let $X_1, \ldots, X_n \stackrel{\text{ind}}{\sim} \text{Normal}(\mu, \sigma^2)$, with μ and σ^2 unknown.

Tests about μ when σ is unknown

For some null value μ_0 , define the test statistic

$$T_{ ext{test}} = rac{ar{X}_n - \mu_0}{S_n/\sqrt{n}}.$$

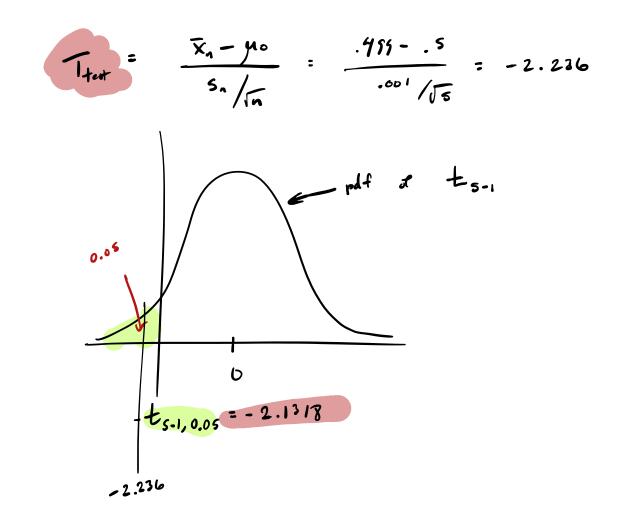
Then the following tests have $P(\text{Type I error}) \leq \alpha$.

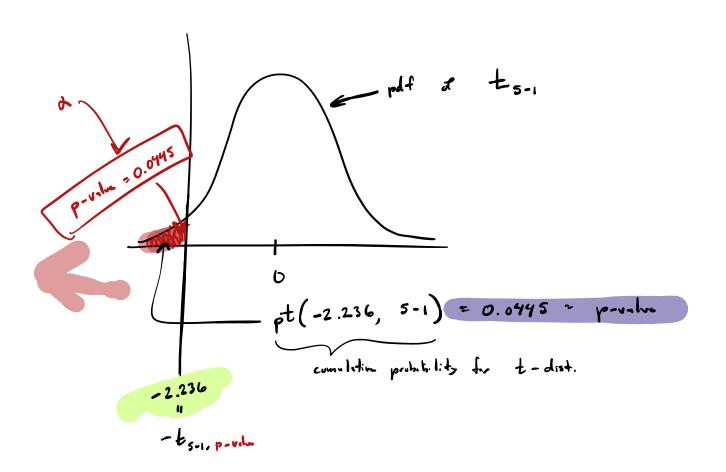
For computing the *p*-values, let $T \sim t_{n-1}$. Draw pictures.

Exercise: A machine should produce ball bearings with Normally distributed diameters having mean 0.5 inches. Is the mean truly 0.5 inches.? (Ex 6.84 in [1]).

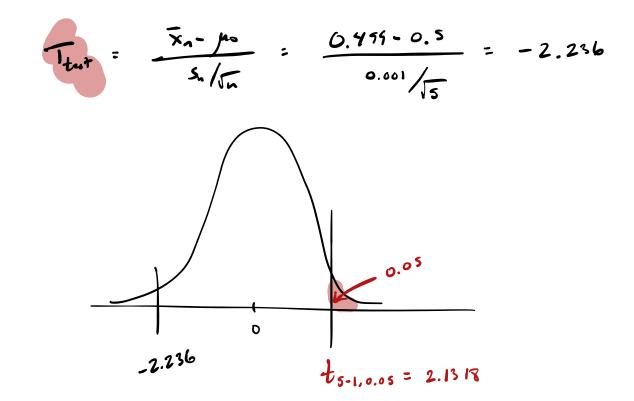
With
$$n = 5$$
 you get $\bar{X}_n = 0.499$ and $S_n = 0.001$. Find the *p*-value for testing
 $H_0: \mu \ge 0.5 \text{ vs } H_1: \mu < 0.5$
 $H_0: \mu \le 0.5 \text{ vs } H_1: \mu > 0.5$
 $H_0: \mu = 0.5 \text{ vs } H_1: \mu \neq 0.5$
 $H_0: \mu = 0.5 \text{ vs } H_1: \mu \neq 0.5$
 $H_0: \mu = 0.5 \text{ vs } H_1: \mu \neq 0.5$
 $H_1: \mu < 0.5$
 $H_2: \mu < 0.5$
 $H_1: \mu < 0$

SQ (?

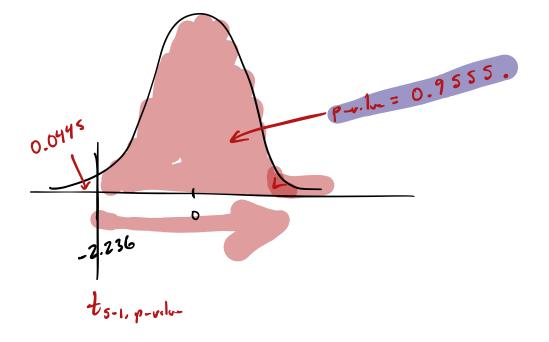


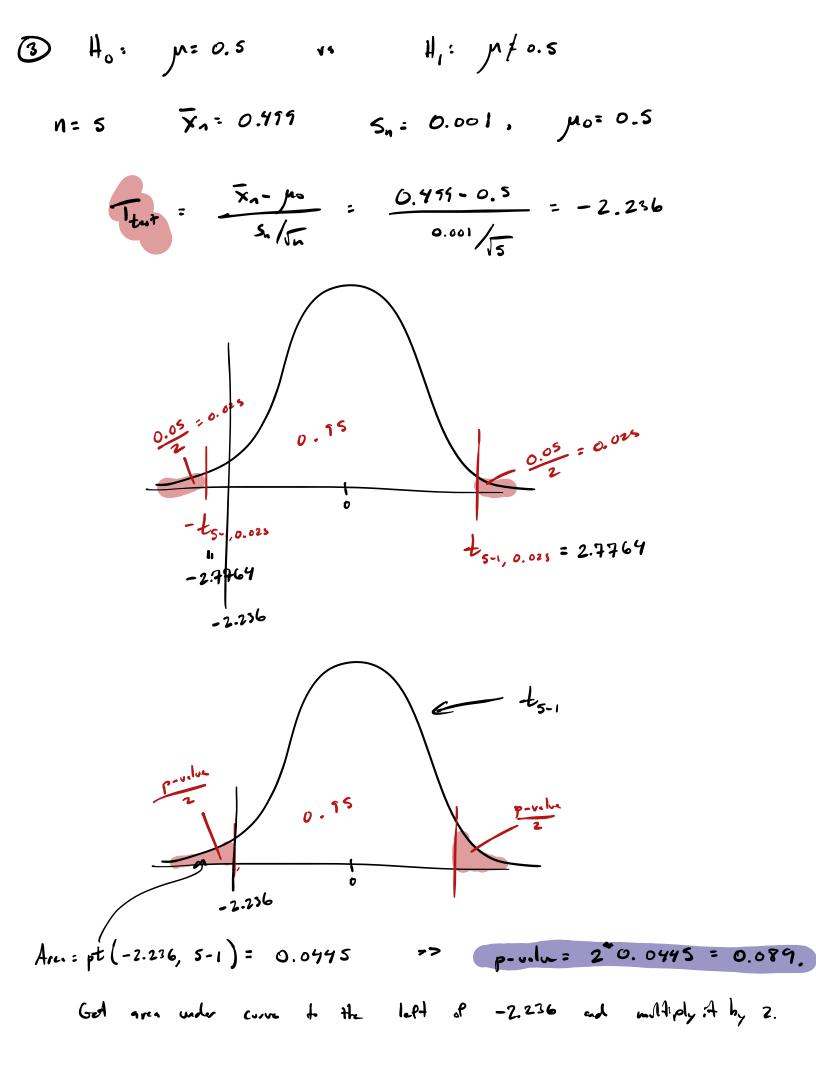


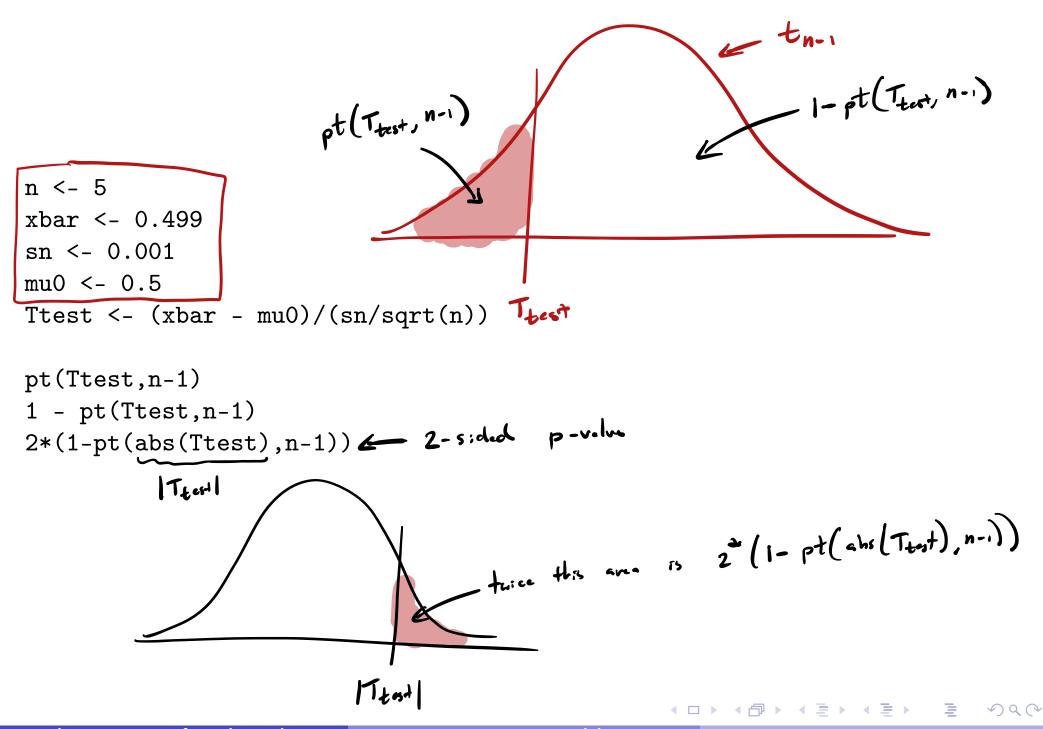
$$n=5$$
 $\overline{\chi}_{n}=0.419$ $S_{n}=0.001$, $\mu_{0}=0.5$



Fuil to reject H. A 20.05.







Karl Gregory (U. of South Carolina)

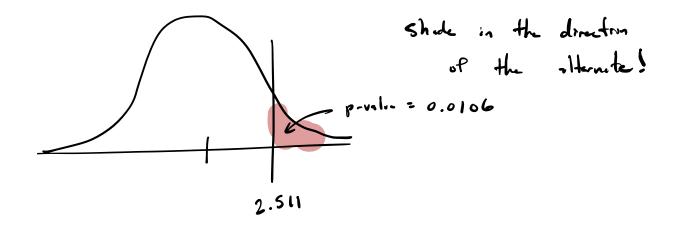
Exercise: Suppose you wish to test whether the LDL (bad cholesterol) level of South Carolinians exceeds the nationwide mean of <u>150 mg/dl</u>.

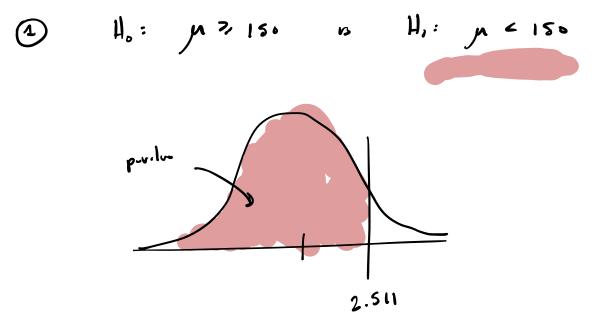
With n = 20 you get $\bar{X}_n = 162.5$ and $S_n = 27.6$. Find the *p*-value for testing

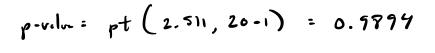
H₀:
$$\mu \ge 150$$
 vs H₁: $\mu < 150$
H₀: $\mu \le 150$ vs H₁: $\mu > 150$
H₀: $\mu = 150$ vs H₁: $\mu \ne 150$

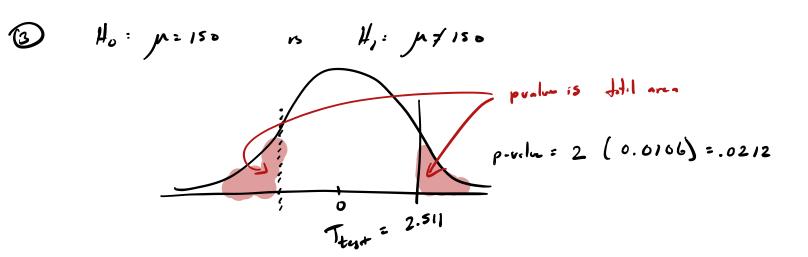
Assume the LDL levels are Normally distributed.

2
$$T_{tot} = \frac{\overline{X_n} - \mu_0}{S_n / \overline{n}} = \frac{165.5 - 150}{29.6 / \overline{20}} = 2.511$$









```
n <- 20
xbar <- 162.5
sn <- 27.6
mu0 <- 150
Ttest <- (xbar - mu0)/(sn/sqrt(n))</pre>
```

```
pt(Ttest,n-1)
1 - pt(Ttest,n-1)
2*(1-pt(abs(Ttest),n-1))
```

 \mathcal{A}

Let X_1, \ldots, X_n iid non-Normal with mean μ and unknown variance σ^2 .

Large-*n* tests about μ when data are non-Normal For some null value μ_0 , define the test statistic

$$T_{\mathrm{test}} = rac{ar{X}_n - \mu_0}{S_n / \sqrt{n}}.$$

Then for large *n*, the following tests have (approximately) $P(\text{Type I error}) \leq \alpha$.

(日) (圖) (문) (문) (문)

Time allowing:

• Draw a random sample of size n = 35 from the 2009 Boston Marathon women's finishing times and compute the *p*-value for testing

 $H_0: \mu \leq 4$ versus $H_1: \mu > 4$

Repeat this 1000 times and make a histogram of the *p*-values.

SQ Q

Let $X_1, \ldots, X_n \stackrel{\text{ind}}{\sim} \text{Bernoulli}(p)$.

Tests about *p*

For some null value p_0 , define the test statistic

$$Z_{
m test} = rac{\hat{p}_n - p_0}{\sqrt{rac{p_0(1-p_0)}{n}}}.$$

Then the following tests have (approximately) $P(\text{Type I error}) \leq \alpha$.

$$\begin{array}{ll} H_0: p \ge p_0 \\ H_1: p < p_0 \end{array} \qquad \begin{array}{ll} H_0: p = p_0 \\ H_1: p \neq p_0 \end{array} \qquad \begin{array}{ll} H_0: p \le p_0 \\ H_1: p \neq p_0 \end{array} \qquad \begin{array}{ll} H_0: p \le p_0 \\ H_1: p > p_0 \end{array} \\ \end{array} \\ \begin{array}{ll} \text{Reject } H_0 \text{ if } Z_{\text{test}} < -z_\alpha \end{array} \qquad \begin{array}{ll} \text{Reject } H_0 \text{ if } |Z_{\text{test}}| > z_{\alpha/2} \end{array} \qquad \begin{array}{ll} \text{Reject } H_0 \text{ if } Z_{\text{test}} > z_\alpha \end{array} \\ \begin{array}{ll} \text{p-val} = P(Z < Z_{\text{test}}) \end{array} \qquad \begin{array}{ll} p\text{-val} = 2 \cdot P(Z > |Z_{\text{test}}|) \end{array} \qquad \begin{array}{ll} p\text{-val} = P(Z > Z_{\text{test}}) \end{array}$$

Discuss: Draw pictures of how to get the *p*-values.

SQ (P

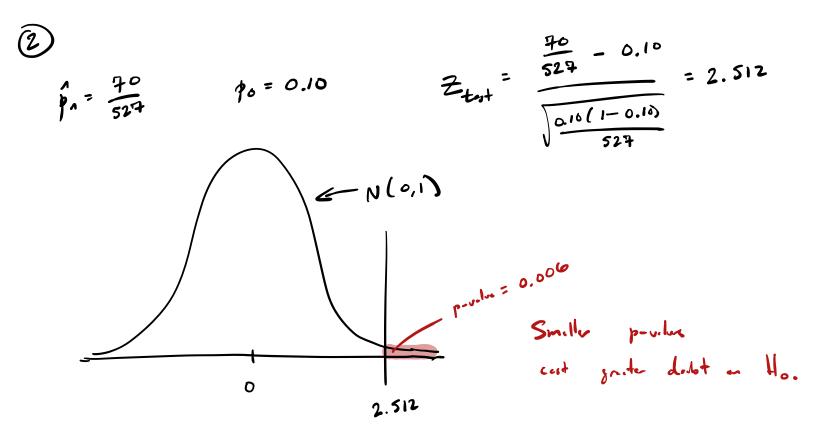
< □ > < □ > < □ > < □ > < □ > < □ > ... □

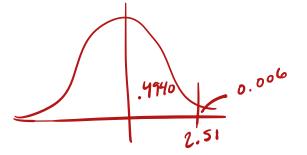
1 Pn p=?

Exercise: The DNR will take action if an invasive fish is concluded to comprise more than 10% of the fish population in a habitat. In a random sample of 527 fish, 70 were of the invasive species.

- What are the appropriate null and alternate hypotheses?
- What is the *p*-value?
- What would the *p*-value be if the two-sided test were of interest?

(日) (문) (문) (문) (문)





p-v.lu = 2° 0.006 : 0.012.

n <- 527
pn <- 70/527
p0 <- 0.10
Ztest <- (pn - p0)/sqrt(p0*(1-p0)/n)</pre>

```
1 - pnorm(Ztest)
2*(1 - pnorm(Ztest))
```

J.T. McClave and T.T. Sincich. Statistics. Pearson Education, 2016.

 \mathcal{A}