STAT 515 Lec 17 slides

Comparative experiments and analysis of variance

K = # of populations

Karl Gregory

Comparative experiments randomly assign <u>subjects</u> to different treatments. **Observational studies compare subjects existing in different circumstances**.

Exercise: Experimental or observational?

- Randomly assign plant clones to different drought conditions and measure CO₂ uptake.
- Output Compare performance in school of children from different backgrounds.
- 3 Randomly assign tracts of a field to different fertilizers and compare yields.
- Compare recycling habits of college students in Greenville and Columbia.

Randon: Zer

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ●

Observational studies are beset with the problem of *confounding variables*.

Confounding variable: An unrecorded property/circumstance associated with the outcome of interest as well as with a property/circumstance measured in the study.

Example: Family income and grades in school of children.

Is hours watching TV a confounding variable?

- Is hours watching TV associated with grades in school?
- Is hours watching TV associated with family income?

If yes to both, hours watching TV would be a confounder if ignored in the study.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□

The random assignment in comparative experiments breaks associations between measured and unmeasured variables, eliminating the problem of confounding variables.

Observational studies cannot establish causation—only association. Comparative experiments *can* establish causation.

 $\land \land \land \land$

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ●

Vocabulary for comparative experiments

- *Treatment*: A condition imposed by the investigator.
- *Experimental unit (EU)*: Each subject in the study—person, animal, etc.
- *Response* Outcome measured on each EU after treatment applied.

~ a ~

◆□▶ ◆□▶ ◆□▶ ◆□▶ □

Example: How to package a steak? Twelve steaks assigned to four different packagings (three to each) and bacteria per cm² recorded after nine days [1].

Steak	Packaging 4	log(# bact	$/cm^2)$	Steak	Packaging	log(# bact/cm ²)
1	Commercial	Y ₁₁ = 7.66		10	Mixed Gas	7.41
6	Commercial	$7_{12} = 6.98$	ا سم	9	Mixed Gas	7.33
7	Commercial	Υn = 7.80	"A'R	2	Mixed Gas	7.04
12	Vacuum	Y ₂₁ = 5.26		8	CO ₂	3.51
5	Vacuum	422 • 5.44		4	CO ₂	2.91
3	/ Vacuum	yn 5.80		11	CO ₂	3.66
	2					

SQ Q

▲□▶ ▲圖▶ ▲필▶ ▲필▶ - 클

Ho: M.= M2 = M2 = M4

(日) (문) (문) (문) (문)

Fisher

Example (cont): Here are the treatment means. How can we compare them?

Packaging	mean of $log(\# bact/cm^2)$
Commercial	(7.48) = T ₁ .
Vaccuum	5.50 = ¥2.
Mixed Gas	7.26 = ¥3.
CO ₂	3.36 : 9 4.

SQ (~

$$K = 4$$

 $n_1 = 3$, $n_2 = 3$, $n_3 = 3$, $n_y = 3$

N = 12

Let

- *K* be the number of treatments.
- n_1, \ldots, n_K be the numbers of EUs assigned to the treatments.
- $N = n_1 + \cdots + n_K$ be the total number of EUs.
- Y_{ij} , $j = 1, ..., n_i$, i = 1, ..., K be response for EU j in treatment group i.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Research question: Do/does any of the treatments affect the response?

 $\begin{array}{ll} H_0: & \mu_1 = \cdots = \mu_K \\ H_1: & \mu_i \neq \mu_{i'} \mbox{ for some } i \neq i', \mbox{ i.e. not all treatment means are equal} \end{array}$

Wrong:
$$H_i: \bigwedge f \not f_2 f \cdots f \not f_k$$

To build a test statistic, we look at the spread of $\overline{Y}_{1.}, \ldots, \overline{Y}_{K.}$

Estimate overall mean with $\bar{Y}_{..} = N^{-1} \sum_{i=1}^{K} \sum_{j=1}^{n_i} Y_{ij}$.

5900

Analysis of variance (ANOVA): Decomposition of the variability in Y_{ij} into

- O Between-treatment variation: Variability due to treatment effects.
- *Within-treatment variation*: Variability due to differences among EUs.

 $\land \land \land \land$

æ.

◆□▶ ◆□▶ ◆目▶ ◆目▶ -

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Sampling distributions of scaled sums of squares

Under the cell means model under H_0 : $\mu_1 = \cdots = \mu_K$, we have

Define the treatment and error mean squares as

Fi. Bour estimate of mi. Ho: M=...=MIL

Exercise: K = 3

i) Largest F_{test}? ii) Smallest? iii) Two with larger MS_{Treatment}? iv) Larger MS_{Error}?

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Sampling distribution of *F*-statistic Under H_0 : $\mu_1 = \cdots = \mu_K$, we have

$$F_{\text{test}} \sim F_{K-1,N-K},$$

where $F_{K-1,N-K}$ is the *F*-dist. with num. df K-1 and denom. df N-K.

F-test for significance of treatment effect

We reject $H_0: \mu_1 = \cdots = \mu_K$ at significance level α if $F_{\text{test}} > F_{K-1,N-K,\alpha}$.

The next slides introduce the *F*-distributions...

▲□▶ ▲圖▶ ▲필▶ ▲필▶ - 필

The *F*-distributions

The *F*-distribution with num. df $\nu_1 > 0$ and den. df $\nu_2 > 0$ has pdf given by

$$f(x) = \frac{\Gamma(\frac{\nu_1 + \nu_2}{2})}{\Gamma(\frac{\nu_1}{2})\Gamma(\frac{\nu_2}{2})} \left(\frac{\nu_1}{\nu_2}\right)^{\frac{\nu_1}{2}} x^{\frac{\nu_1}{2} - 1} \left(1 + \frac{\nu_1}{\nu_2}x\right)^{-\frac{\nu_1 + \nu_2}{2}}, \quad x > 0.$$

We write $X \sim F_{\nu_1,\nu_2}$.

F-distributed rv as ratio of chi-squared rvs

If $W_1 \sim \chi^2_{
u_1}$ and $W_2 \sim \chi^2_{
u_2}$ are independent, then

$$rac{W_1/
u_1}{W_2/
u_2} \sim F_{
u_1,
u_2}.$$

 $\mathcal{A} \mathcal{A} \mathcal{A}$

(日) (圖) (문) (문) (문)

F distributions

Can use function qf() to look up the values, e.g.

 $F_{3,8,0.05} = qf(.95,3,8) = 4.066181$ $F_{3,8,0.01} = qf(.99,3,8) = 7.590992$

Can get area under the curve to the left with the pf() function.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

Exercise: Get the ANOVA table for the steaks data using lm() and anova().

 $\nabla Q \cap$

《口》《圖》《臣》《臣》 [] 臣

F distributions

read in the data and format it for ANOVA:

```
bacteria <- c(7.66,6.98,7.80,
5.26,5.44,5.80,
7.41,7.33,7.04,
3.51,2.91,3.66)
```

```
packaging <- c(rep("Commercial",3),
            rep("Vacuum",3),
            rep("Mixed Gas",3),
            rep("C02",3))
```

```
packaging <- as.factor(packaging)</pre>
```

estimate model with lm() function and retrieve ANOVA table:

```
model <- lm(bacteria ~ packaging)
anova(model)</pre>
```

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 少久(~

Consider the assumptions of the model

$$Y_{ij} = \mu_i + \varepsilon_{ij}, \qquad j = 1, \ldots, n_i, \quad i = 1, \ldots, K,$$

where the ε_{ij} are independent Normal $(0, \sigma_{\varepsilon}^2)$.

Use plot() on the output of lm().

Exercise: Check the diagnostic plots for the steaks example.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三

🚺 R. O. Kuehl.

Design of Experiments: Statistical Principles of Research Design and Analysis.

Duxbury/Thomson Learning, 2000. Google-Books-ID: mIV2QgAACAAJ.

¥=3

Betwees Within

Ho: Mi= M2= M3

