
STAT 515 hw 10
Two-sample testing, comparative experiments and ANOVA

Attach a sheet with any R plots and R code printed on it. You may write out your other answers by
hand if you want. Just try to make it easy for me grade!!

1. In a study of how different types of greetings transmit bacteria, a sterile glove was donned, dipped
in bacteria, and then used in a handshake, a high five, or a fist bump with a hand wearing a sterile
glove. Afterwards the bacteria on the sterile glove were counted. These data come from exercise
9.24 of McClave and Sincich (2016). Read the data into R using

handshake <- c(131,74,129,96,92)

highfive <- c(44,70,69,43,53)

fistbump <- c(15,14,21,29,21)

It is of interest to study differences among the mean bacteria counts expected from these types of
greeting, which we may denote by µhandshake, µhighfive, and µfistbump.

(a) Use R to get a 99% confidence interval for µhandshake − µhighfive assuming σ2
handshake = σ2

highfive.
Use the command

t.test(handshake,highfive,conf.level=.99,var.equal=TRUE)

The output is

Two Sample t-test

data: handshake and highfive

t = 3.8738, df = 8, p-value = 0.004716

alternative hypothesis: true difference in means is not equal to 0

99 percent confidence interval:

6.503594 90.696406

sample estimates:

mean of x mean of y

104.4 55.8

so the 99% confidence interval for µ1 − µ2 is (6.503594, 90.696406).

(b) Use R to get a 90% confidence interval for µhighfive − µfistbump under the assumption that
σ2

highfive 6= σ2
fistbump.

Use the command

t.test(highfive,fistbump,conf.level=.90,var.equal=FALSE)

This gives the output



Welch Two Sample t-test

data: highfive and fistbump

t = 5.5546, df = 5.6067, p-value = 0.0018

alternative hypothesis: true difference in means is not equal to 0

90 percent confidence interval:

23.1168 48.4832

sample estimates:

mean of x mean of y

55.8 20.0

so the 90% confidence interval for µ1 − µ2 is (23.1168, 48.4832).

(c) Use the command
boxplot(handshake,highfive,fistbump)

to get boxplots of the data. Turn in this plot.

The plot is the following:

1 2 3

20
40

60
80

10
0

12
0

(d) Based on the boxplots, comment on whether you should assume σ2
highfive = σ2

fistbump.

It does not seem reasonable to assume equal variances because the interquartile ranges—the
heights of the rectangle parts of the boxplots—are very different.

(e) Use R to test the hypotheses

H0: µhandshake − µfistbump = 0 versus H1: µhandshake − µfistbump 6= 0
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at the α = .05 significance level. You must decide whether to put var.equal=TRUE or
var.equal=FALSE. Say whether you reject H0 and why based on the output.

Use the command

t.test(handshake,fistbump,var.equal=FALSE)

We should put var.equal=FALSE because the variances do not appear to be equal (from
looking at the boxplots). The above command gives the output

Welch Two Sample t-test

data: handshake and fistbump

t = 7.395, df = 4.4665, p-value = 0.001145

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

53.97547 114.82453

sample estimates:

mean of x mean of y

104.4 20.0

(f) Suppose an investigator wanted to do an ANOVA for these data, where handshake, highfive,
and fistbump are considered treatments. Which one of the ANOVA assumptions does not
appear to be satisfied for these data?

The assumption of equal variances in all of the treatment groups does not appear to be
satisfied.

2. Execute the commands below in R to read in some data. The data points are the number of crashes
(average per year) due to drivers’ running red lights at thirteen intersections before and after the
installation of red light cameras. These data come from exercise 9.53 of McClave and Sincich (2016).
Read the data into R with the commands

before <- c(3.6,.27,.29,4.55,2.6,2.29,2.4,0.73,3.15,3.21,.88,1.35,7.35)

after <- c(1.36,0,0,1.79,2.04,3.14,2.72,0.24,1.57,0.43,0.28,1.09,4.92)

It is of interest to see whether the installation of a camera reduces the number of crashes due to
running red lights.

(a) Compute the differences in the numbers of crashes at the intersections:

diff <- before - after

Give the mean before-minus-after difference from the sample.

The code
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before <- c(3.6,.27,.29,4.55,2.6,2.29,2.4,0.73,3.15,3.21,.88,1.35,7.35)

after <- c(1.36,0,0,1.79,2.04,3.14,2.72,0.24,1.57,0.43,0.28,1.09,4.92)

diff <- before - after

mean(diff)

give a mean of 1.006923.

(b) Formulate a set of hypotheses for testing whether the installation of cameras is effective in
reducing the number of accidents. Use µdiff to denote the mean difference. Hint: This is not
a two-sample problem but a one-sample problem, even though it may look like a two-sample
problem because two sets of data have been given. Ask yourself, if the cameras are effective in
reducing the number of crashes, should µdiff be greater than or less than zero?

If cameras are effective in reducing the number of crashes, then the numbers of crashes
before the installation of the cameras would tend to be higher than the numbers afterwards,
so µdiff would be greater than zero, since we are defining the differences as before-minus-
after. So we are interested in testing the hypotheses

H0: µdiff ≤ 0 versus H1: µdiff > 0.

(c) Create a Normal quantile-quantile plot of the differences and comment on whether you think
the differences are Normally distributed.

We can make a Normal quantile-quantile plot of the differences with the commands

qqnorm(scale(diff))

abline(0,1)

This produces the plot
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(d) The t.test() function in R can be used in the one-sample setting too. Use the command

t.test(diff,alternative=" ")

to get a p-value for the test. You must decide whether to put greater, less, or two.sided in
for the alternative.

The command
t.test(diff,alternative="greater")

produces the output

One Sample t-test

data: diff

t = 3.0023, df = 12, p-value = 0.00551

alternative hypothesis: true mean is greater than 0

95 percent confidence interval:

0.4091686 Inf

sample estimates:

mean of x

1.006923

The p-values for the test is 0.00551.

(e) What is your decision at the α = .05 significance level? Are the cameras effective?
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Based on the p-value computed in the previous part, which was 0.00551, we reject H0 and
conclude that the cameras are effective.

3. It is of interest whether soil scouring has any effect on whether a tree growing in a flood plain falls.
Researchers subjected trees to three different degrees of soil scouring (none, shallow, and deep) and
then measured the maximum resistive bending moment of the tree trunk bases. Read the data,
which comes from exercise 10.36 of McClave and Sincich (2016), into R in preparation to run an
ANOVA using the commands

maxresist <- c(23.68,8.88,7.52,25.89,22.58,11.13,29.19,

13.66,20.47,23.24,4.27,2.36,8.48,12.09,3.46)

soilsc <- c( rep("none",5),rep("shallow",5),rep("deep",5))

(a) If it is of interest whether soil scouring has any effect on the mean maximum resistive bending
moment of the tree trunk bases, what are the relevant null and alternate hypotheses in terms
of µnone, µshallow, and µdeep?

We are interested in testing the hypotheses

H0: µnone = µshallow = µdeep versus H1: Not all of µnone, µshallow, and µdeep are the same.

(b) Execute the command
plot(lm(maxresist∼soilsc))

and press enter in the console to scroll through four different plots. One of them is a Normal
quantile quantile plot of the residuals. Turn in this plot and comment on whether you think
the residuals are Normal.

The plot looks like
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The residuals appear to be Normally distributed.

(c) Execute plot(lm(maxresist ∼ soilsc)) again and look at the Residuals vs Fitted plot. Turn
in this plot and comment on whether you think the variance of the response is the same in all
three treatment groups.

The plot looks like
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What we would like to see in this plot is a similar vertical spread in the points for all
fitted values. We see that 5 points are plotted at each of three positions on the horizontal
axis. These points on the horizontal axis at which the points are plotted are the treatment

Page 7



means. We are looking to see if the vertical spread of the three sets of points is equal. It
is somewhat hard to tell, since we only have 5 observations in each treatment group, but
it does not look like there is any grave departure from equal variances in the treatment
groups based on this plot.

(d) Enter the command
anova(lm(maxresist∼soilsc))

to get the ANOVA table. Turn in this table.

The above code returns the output

Analysis of Variance Table

Response: maxresist

Df Sum Sq Mean Sq F value Pr(>F)

soilsc 2 528.52 264.260 5.4032 0.02122 *

Residuals 12 586.90 48.908

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(e) If the ANOVA assumptions are satisfied, what do you conclude about the effect of soil scouring
at the α = 0.05 significance level?

The p-value in the ANOVA table is 0.02122, which is less than α = 0.05, so we conclude at
the 0.05 significance level that soil scouring has some kind of effect on the mean maximum
resistive bending moment of tree trunk bases.

4. It is of interest whether the temperature has any effect on the mean ethanol concentration in bio-fuel
produced in a fermentation process. An experiment is run under the temperatures 30◦, 35◦, 40◦,
and 45◦ degrees Celsius. Read the data, which come from exercise 10.39 of McClave and Sincich
(2016), into R in preparation for ANOVA, with the commands

ethanol <- c( 103.3,103.4,101.0,101.7,102.0,101.1,97.2,96.9,96.2,55.0,56.4,54.9)

temp <- c(rep("30deg",3), rep("35deg",3),rep("40deg",3),rep("45deg",3))

temp <- as.factor(temp)

(a) If it is of interest whether the temperature has any effect on the mean ethanol concentration,
what are the relevant hypotheses in terms of µ30◦ , µ35◦ , µ40◦ , and µ45◦?

We are interested in the hypotheses

H0: µ30◦ = µ35◦ = µ40◦ = µ45◦ versus H1: µ30◦ , µ35◦ , µ40◦ , µ45◦ not all the same.
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(b) Do part (b) of Question 3 for the ethanol data.

We can read in the data as follows:

ethanol <- c( 103.3,103.4,101.0,101.7,102.0,101.1,97.2,96.9,96.2,55.0,56.4,54.9)

temp <- c(rep("30deg",3), rep("35deg",3),rep("40deg",3),rep("45deg",3))

temp <- as.factor(temp)

Then we can use the command plot(lm(ethanol ∼ temp)) to obtain the plot
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There appears not be be any significant departure from Normality.

(c) Do part (c) of Question 3 for the ethanol data.

We use the command plot(lm(ethanol ∼ temp)) to obtain the plot
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There appears not be be any significant departure from the equal-variances assumption.

(d) Do part (d) of Question 3 for the ethanol data.

To get the ANOVA table we execute the command anova(lm(ethanol ∼ temp)), which
returns the output

Analysis of Variance Table

Response: ethanol

Df Sum Sq Mean Sq F value Pr(>F)

temp 3 4589.5 1529.82 2026.3 7.34e-12 ***

Residuals 8 6.0 0.76

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(e) If the ANOVA assumptions are satisfied, what do you conclude about the effect of temperature
on the ethanol concentration at the α = 0.01 significance level?

Since the p-value is smaller than α = 0.01, we reject H0: at the α = 0.01 significance
level. We conclude that the temperature has some kind of effect on the mean ethonal
concentration.
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