STAT 515 sp 2024 Final Exam

Karl Gregory

- Do not open this exam until told to do so.
- You may have two handwritten sheets of notes out during the exam.
- You have 150 minutes to work on this exam.
- You may NOT use any kind of calculator.
- If you are unsure of what a question is asking for, do not hesitate to ask me for clarification.
- Good luck, and may the odds be ever in your favor!

$$
\left.\left.\begin{array}{cccc}
X \sim & \mathcal{X} & \mathbb{E} X & \operatorname{Var}(X) \\
\hline \operatorname{Binomial}(n, p) & P(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x} & x=0,1, \ldots, n & n p \\
\text { Poisson }(\lambda) & P(X=x)=\frac{e^{-\lambda} \lambda^{x}}{x!} & x=0,1,2, \ldots & \lambda
\end{array}\right] \quad \lambda 1-p\right)
$$

A t-table is attached to this exam.

1. Eighty percent of purchasers of a 14 " carbon steel wok from KG's discount store are satisfied with the wok. Ten percent of the purchasers post a review of the wok on the store's website. Of the reviews, ninety percent indicate satisfaction with the wok. Give the probability that:

$$
\begin{aligned}
& \begin{array}{l}
\text { (a) A satisfied purchaser posts a review of the wok. } \\
S=\text { satifich } \\
R=\text { posts review }
\end{array} P(S)=\frac{8}{10} \quad P(R)=\frac{1}{10} \quad P(S \mid R)=\frac{9}{10} \\
& \text { We want } P(R \mid S)=\frac{P(R \cap S)}{P(S)}=\frac{P(S \mid R) P(R)}{P(S)}=\frac{\frac{9}{10} \frac{1}{10}}{\frac{8}{10}}=\frac{9}{80}
\end{aligned}
$$

(b) A customer who does not post a review is satisfied with the wok.

$$
\begin{aligned}
P\left(S \mid R^{c}\right)=\frac{P\left(S \cap R^{c}\right)}{P\left(R^{c}\right)}=\frac{P\left(R^{c} \mid S\right) P(S)}{P\left(R^{c}\right)} & =\frac{[1-P(R(S)] P(s)}{P\left(R^{c}\right)} \\
& =\frac{\left(1-\frac{9}{80}\right) \frac{8}{10}}{1-\frac{1}{10}} \\
& =\frac{\left(\frac{71}{80}\right) \frac{8}{10}}{\frac{9}{10}} \\
& =\frac{71}{90}
\end{aligned}
$$

2. Ten people are satisfied with the wok. Assuming each purchaser's satisfaction or dissatisfaction with the wok to be independent of that of the other purchasers, give an expression for the probability that:
(a) Exactly 8 purchasers are satisfied with the wok.

$$
\begin{aligned}
& \text { Chou do not havetavalute it }) \\
& \text { Then } X \sim \text { Binomial }(n=10, p=0.80)
\end{aligned}
$$

$$
P(x=8)=\binom{10}{8}(0.80)^{8}(1-0.80)^{10-8}
$$

(b) All 10 purchasers are satisfied with the wok.

$$
P(X=10)=\binom{10}{10}(6.0)^{10}(1-.0 .8)^{1010}=(.08)^{10}
$$

(c) At least one purchaser is dissatisfied with the wok.

This

$$
\text { means } \quad x \leq 9
$$

We have $p(x \leq 9)=1-p(x=10)=1-(0.80)^{10}$
3. In order to season the 14 " carbon steel wok for first-time use, purchasers must spend several minutes super-heating it until the metal acquires a bluish tint. Nine randomly selected purchasers of the wok recorded in a survey the number of minutes they spent super-heating their woks. The mean and standard deviation of the reported numbers of minutes were $\bar{X}_{n}=35$ and $S_{n}=5$. Mr. KG of KG's discount store holds firmly to the conviction that properly seasoning a wok requires at least 40 minutes of super-heating. If he concludes that purchasers of the wok do not spend, on average, sufficient time super-heating their woks, he will begin shipping with each wok a comprehensive wok-seasoning guide
the seasoning process.
(a) Give the null and alternate hypotheses which are of interest to Mr. KG.

(b) Compute the test statistic of the test for testing the hypotheses in part (a).

$$
T_{\text {test }}=\frac{\bar{x}_{n}-\mu_{0}}{s_{n} / \sqrt{n}}=\frac{35-40}{5 / \sqrt{9}}=-3 .
$$

(c) Select the interval in which the p-value lies (this is multiple choice):

(d) Should Mr. KG begin shipping the wok seasoning guide with each wok? Explain your answer.

(e) What assumption, if any, is implicit in the analysis you have carried out?

The analysis assume the s.pereneatery times ane Normally distributed.
4. A 14 " cast-iron wok is also sold by KG's discount store and is marketed as an alternative to the 14 " carbon steel wok. To better understand customer sentiment around these products, Mr. KG acquires, for each product, 1-to-5-star ratings from a random sample of 40 purchasers. The frequencies of each rating for each product, along with the mean and standard deviation of the ratings for each product, are tabulated here:

Rating	1	2	3	4	5	mean	std. dev
Carbon steel	2	6	18	12	2	3.150	0.921
Cast-iron	4	14	17	3	2	2.625	0.952

(a) Are the ratings of the sampled purchasers drawn from a Normal distribution? Explain why or why not.

Sro. cub motor is a while number, $1,2,3,4,05$, the rations do nut hew a Normal distribution.
Th. N.m.l distribution is a continuous diitabition with support in the interval $(-\infty, \infty)$.
(b) To what phenomenon owes the fact that difference in mean ratings will be approximately Normally distributed?

To the phenomenon described by the central lime st theoremthat sample mans bchow mon and mon lite
Normally distributed random variables as the sample size is increased, regardless of the shape of the population distribution.
(c) Study the R output below and write an assessment to Mr. KG, based on these data, of the customer sentiments around the 14 " cast-iron and carbon steel woks. Give a justification of your assessment.

Two Sample t-test

```
data: carbon_steel and cast_iron
t = 2.5059, df = 78, p-value = 0.0143
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    0.1078986 0.9421014
sample estimates:
mean of x mean of y
        3.150 2.625
```

it small poilu (0.0143) fo th tat .e
ef..l man retires rethuts strong ci: dene in th

5. Ever ships. To decide which recipe among three possible recipes he should send, he recruits twelve individuals who are culinarily inclined, but who have as yet never cooked with a carbon steel wok; he assigns each individual randomly to one of the three recipes, such that four individuals are assigned to each recipe. Each individual then cooks the assigned recipe in Mr. KG's kitchen with Mr. KG's very own carbon steel wok under the kind tutelage of that same Mr. KG -and afterwards rates the level of overall reward and gratification experienced on a scale of 1 to 10 . The ratings given were

Recipe 1	Recipe 2	Recipe 3
7	3	5
8	6	7
7	5	4
8	5	5

From these data, Mr. KG would like to know if it makes any difference which recipe he sends, and, if possible, which recipe would most please those cooking for the first time with a carbon steel wok.

Here is some R output:
Analysis of Variance Table

Response: y
Dy Sum Sq Mean Sq F value $\operatorname{Pr}(>F)$
recipe $\quad 217.167 \quad 8.5833 \quad 7.3571 \quad 0.01278$ *
Residuals 910.5001 .1667
--
Signif. codes: $0{ }^{(* * * '} 0.001$ '**' 0.01 '*’ 0.05 '.' 0.1 ' ' 1

Page 6

Fitted values

Theoretical Quantiles
(a) Give the null and alternate hypotheses of interest to Mr. KG.

Lat $\mu_{1}, \mu_{2}, \mu_{3}$ be the average "gratification" lade.
$H_{0}: \mu_{1}=\mu_{2}=\mu_{3}$ us $H_{1}: \mu_{1}, \mu_{2}, \mu_{3}$ not ill the same.
(b) What does the ratio given by $8.5833 / 1.1667$, which appears in the ANOVA table, describe?

This is the F statista, which is a ratio of between treatment variation over within-trectment variation.
(c) What is the purpose of the Residuals vs Fitted plot?

The pep pose B to see whether the variance of the response is the same across treatment groups.
(d) Comment on whether you think the ANOVA assumptions are satisfied.

The Normal $Q-Q$ plot indicates sum depation from Normality, and the residuals us fits plot suggests that there may be useful variance across the treatment grops-but it is hard to tell, sine there an only 4 observitome mech grope.
(e) Write a data analysis report for Mr. KG explaining to him what he may conclude from the data. Give justifications for your claims.
There is strong evidence that the means ore not 11 the same, which is refloated m the smell poole (0.01278).

In light of this, M. KG should send Recipe 1, which spears (clearly) to have the highest mean.
6. A colleague of Mr. KG complains about the recipe selected on the basis of the study described in the previous question, saying that it is too spicy, owing to the amount of white pepper it calls for. In character with his perfectionism and penchant for statistical rigor, Mr. KG prepares the recipe 30 times, each time with a different number of peppercorns between 1 and 30 . The spiciness of the dish is each time rated by his colleague (who does not know how many peppercorns were used) on a scale of 0 to 1000. The study resulted in the data plotted here:

A simple linear regression model is fit to the data. Below is some R output:
Call:
$\operatorname{lm}($ formula $=Y$ ~)

Residuals:

Min	1Q	Median	3Q	Max
-165.71	-77.27	6.13	66.35	228.19

Coefficients:

| | Estimate Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$ | | | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 38.983 | 36.503 | 1.068 | 0.295 |
| x | 30.906 | 2.056 | 15.031 | $6.2 \mathrm{e}-15 * * *$ |
| --- | | | | |
| Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 | | | | |

Residual standard error: 97.48 on 28 degrees of freedom
Multiple R-squared: 0.8897,Adjusted R-squared: 0.8858

```
F-statistic: 225.9 on 1 and 28 DF, p-value: 6.2e-15
```


(a) Give the intercept and slope of the least-squares regression line.

$$
\begin{aligned}
& \hat{\beta}_{0}=38.983 \\
& \hat{\beta}_{1}=30.906
\end{aligned}
$$

(b) State whether the assumptions of the linear regression model are satisfied for these data. Explain why they are or are not satisfied.

They ore ant.
The tore velctounctive dies ant roper to be lineve.

Mr. KG decides to focus on the relationship between the spiciness level and the number of peppercorns while the latter is between 10 and 20. Ignoring the part of the data with a number of peppercorns outside of this range, the above R output becomes:

Call:
$\operatorname{lm}(f o r m u l a=Y[10: 20] \sim x[10: 20])$

Residuals:

Min	$1 Q$	Median	SQ	Max
-59.956	-21.764	-1.273	15.438	79.812

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
--- slope
Signif. codes: $0{ }^{(* * * '} 0.001$ '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 39.76 on 9 degrees of freedom
Multiple R-squared: 0.9684, Adjusted R-squared: 0.9649
F-statistic: 275.9 on 1 and 9 DF, p-value: 4.641e-08

(c) In the second analysis, what is the interpretation of the value 62.960 appearing in the R output?

(d) In the second analysis the value R^{2} is reported as 0.9684 . Give a careful interpretation of this value.

7. Mr. KG, interested in whether his customers tend to buy wok spatulas along with their woks, draws a sample of 100 recent orders from KG's Discount Store. Among the 100 orders sampled, 50 orders included a wok and 20 orders included a wok spatula. Of the 50 orders that included a wok, 15 also included a wok spatula.
(a) Fill out the counts in the table below, including row and column totals, to summarize the 100 sampled orders.

		Wok		
		Yes	No	
Wok spatula	Yes	$\mathbf{1 5}$	5	20
	No	35	45	80
		50	50	$\mathbf{1 0 0}$

(b) Give the table of expected counts under the null hypothesis of no association.

(c) The output of the chi-squared test for association is given below. Based on the output, write for Mr. KG your conclusion concerning an association between buying a wok and buing a wok spatula.

Pearson's Chi-squared test
data: M
X-squared $=6.25, \mathrm{df}=1, \mathrm{p}$-value $=0.01242$

