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Rust inhibitors example

Data from Kutner et al. (2005).
Ten experimental units assigned to each of four brands of rust inhibitors.

link <- url("https://people.stat.sc.edu/gregorkb/data/KNNLrust.txt")
rust <- read.csv(link,col.names=c("score","brand","rep"),sep = "", header = FALSE)
head(rust)

score brand rep
1 43.9 1 1
2 39.0 1 2
3 46.7 1 3
4 43.8 1 4
5 44.2 1 5
6 47.7 1 6

Do the brands differ in effectiveness? Is there a best brand?

2 / 52



Randomized experiments comparing treatments

Start with 𝑁 experimental units (EUs), e.g. subjects, mice, etc.
Randomly assign each EU to one of 𝑎 treatment groups.
Measure on each EU after treatment a response 𝑌 .
Compute the average of the responses in each treatment group…
Questions we’d like to answer:

▶ Is the response mean the same in all treatment groups?
▶ If not, then which pairs of means are different?
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One-way ANOVA setup

Consider the model

𝑌𝑖𝑗 = 𝜇 + 𝜏𝑖 + 𝜀𝑖𝑗, 𝑗 = 1, … , 𝑛𝑖, 𝑖 = 1, … , 𝑎,
where

▶ 𝑌𝑖𝑗 is the response for EU 𝑗 in treatment group 𝑖.
▶ 𝜇 represents an overall or baseline mean.
▶ 𝜏𝑖 is the treatment effect for treatment 𝑖.
▶ The 𝜀𝑖𝑗 are independent Normal(0, 𝜎2) error terms.
▶ The 𝑛𝑖 are the numbers of replicates in the treatment groups.

Of central interest are the hypotheses

𝐻0: 𝜏𝑖 = 0 versus 𝐻1: At least one 𝜏𝑖 is nonzero.

If we reject 𝐻0, we may wish to sort/compare the treatments.
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Parameter constraints in the treatment effects model

The model has 𝑎 + 1 parameters to describe 𝑎 treatment means.
To identify 𝜇, 𝜏1, … , 𝜏𝑎 uniquely, we impose one of these constraints:

1. To give 𝜇 a baseline interpretation, set

𝜏𝑎 = 0.

2. To give 𝜇 an overall mean interpretation, set

𝑎
∑
𝑖=1

𝑛𝑖𝜏𝑖 = 0.
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Alternative “cell means model” setup

An alternate version of the model is

𝑌𝑖𝑗 = 𝜇𝑖 + 𝜀𝑖𝑗, 𝑗 = 1, … , 𝑛𝑖, 𝑖 = 1, … , 𝑎,
where

▶ 𝑌𝑖𝑗 is the response for EU 𝑗 in treatment group 𝑖.
▶ 𝜇𝑖 represents the mean of treatment group 𝑖.
▶ The 𝜀𝑖𝑗 are error terms distributed as Normal(0, 𝜎2).

In this version of the model the central hypotheses become

𝐻0: 𝜇1 = ⋯ = 𝜇𝑎 versus 𝐻1: 𝜇𝑖 ≠ 𝜇′
𝑖 for some 𝑖 ≠ 𝑖′.

6 / 52



Goals in one-way ANOVA

Under the one-way ANOVA setup

𝑌𝑖𝑗 = 𝜇 + 𝜏𝑖 + 𝜀𝑖𝑗, 𝑗 = 1, … , 𝑛𝑖, 𝑖 = 1, … , 𝑎,

where 𝜀𝑖𝑗
ind∼ Normal(0, 𝜎2), we wish to

1. Visualize the data.
2. Estimate the parameters 𝜇, 𝜏1, … , 𝜏𝑎
3. Estimate the error term variance 𝜎2.
4. Decompose the variation in the 𝑌𝑖𝑗 as signal plus noise.
5. Test whether there is any difference in treatment group means.
6. Sort/compare the treatment means if there is any difference.
7. Check whether the model assumptions are satisfied.
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Rust inhibitors example (cont)
Visually compare the means of several treatment groups with boxplots.

boxplot(score ~ brand, data = rust)
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Treatment effect estimation in one-way ANOVA

Let 𝑁 = 𝑛1 + ⋯ + 𝑛𝑎 and define

̄𝑌.. = 1
𝑁

𝑎
∑
𝑖=1

𝑛𝑖

∑
𝑗=1

𝑌𝑖𝑗 and ̄𝑌𝑖. = 1
𝑛𝑖

𝑛𝑖

∑
𝑗=1

𝑌𝑖𝑗, for 𝑖 = 1, … , 𝑎.

1. Under the 𝜇-as-baseline constraint, set

̂𝜇 = ̄𝑌𝑎. and ̂𝜏𝑖 = ̄𝑌𝑖. for 𝑖 = 1, … , 𝑎 − 1.

2. Under the 𝜇-as-overall-mean constraint, set

̂𝜇 = ̄𝑌.. and ̂𝜏𝑖 = ̄𝑌𝑖. − ̄𝑌.. for 𝑖 = 1, … , 𝑎.

Both ways give ̂𝑌𝑖𝑗 = ̂𝜇 + ̂𝜏𝑖 = ̄𝑌𝑖. for 𝑖 = 1, … , 𝑎.
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Rust inhibitors example (cont)
R uses by default the deviations from baseline parameterization:

# use as.factor() to designate brand as a "factor"
lm_out <- lm(score ~ as.factor(brand), data = rust)
lm_out

Call:
lm(formula = score ~ as.factor(brand), data = rust)

Coefficients:
(Intercept) as.factor(brand)2 as.factor(brand)3 as.factor(brand)4

43.14 46.30 24.81 -2.67

# see how these are obtained from the group means
aggregate(rust$score, by = list(rust$brand), FUN = mean)

Group.1 x
1 1 43.14
2 2 89.44
3 3 67.95
4 4 40.47
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Estimation of the error term variance 𝜎2

As in linear regression, define the

▶ fitted values ̂𝑌𝑖𝑗 as ̂𝑌𝑖𝑗 = ̄𝑌𝑖. for 𝑗 = 1, … , 𝑛𝑖, and the
▶ residuals ̂𝜀𝑖𝑗 as ̂𝜀𝑖𝑗 = 𝑌𝑖𝑗 − ̄𝑌𝑖.

for 𝑗 = 1, … , 𝑛𝑖, 𝑖 = 1, … , 𝑎.
Then an unbiased estimator of 𝜎2 is given by

�̂�2 = 1
𝑁 − 𝑎

𝑎
∑
𝑖=1

𝑛𝑖

∑
𝑗=1

̂𝜀2
𝑖𝑗 = 1

𝑁 − 𝑎
𝑎

∑
𝑖=1

𝑛𝑖

∑
𝑗=1

(𝑌𝑖𝑗 − ̄𝑌𝑖.)2.

Divide by 𝑁 − 𝑎 since the 𝑁 residuals depend on 𝑎 estimated quantities…
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Rust inhibitors example (cont)
tab <- cbind(rust$brand,rust$score,lm_out$fitted.values,lm_out$residuals)
colnames(tab) <- c("brand","score","Fitted value","Residual")
head(tab,n = 13)

brand score Fitted value Residual
1 1 43.9 43.14 0.76
2 1 39.0 43.14 -4.14
3 1 46.7 43.14 3.56
4 1 43.8 43.14 0.66
5 1 44.2 43.14 1.06
6 1 47.7 43.14 4.56
7 1 43.6 43.14 0.46
8 1 38.9 43.14 -4.24
9 1 43.6 43.14 0.46
10 1 40.0 43.14 -3.14
11 2 89.8 89.44 0.36
12 2 87.1 89.44 -2.34
13 2 92.7 89.44 3.26

sgsqhat <- sum(lm_out$residuals^2) / (nrow(rust) - 4)
sgsqhat

[1] 6.139833
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The value of �̂� is printed in the summary() output:

summary(lm_out)

Call:
lm(formula = score ~ as.factor(brand), data = rust)

Residuals:
Min 1Q Median 3Q Max

-4.270 -1.597 0.395 1.275 4.730

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 43.1400 0.7836 55.056 <2e-16 ***
as.factor(brand)2 46.3000 1.1081 41.782 <2e-16 ***
as.factor(brand)3 24.8100 1.1081 22.389 <2e-16 ***
as.factor(brand)4 -2.6700 1.1081 -2.409 0.0212 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.478 on 36 degrees of freedom
Multiple R-squared: 0.9863, Adjusted R-squared: 0.9852
F-statistic: 866.1 on 3 and 36 DF, p-value: < 2.2e-16
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Sums of squares in the one-way ANOVA model

As in linear regression we decompose the variation in the 𝑌𝑖𝑗 by defining:

▶ Total sum of squares: SSTot = ∑𝑎
𝑖=1 ∑𝑛𝑖

𝑗=1(𝑌𝑖𝑗 − ̄𝑌..)2

▶ Treatment sum of squares: SSTrt = ∑𝑎
𝑖=1 𝑛𝑖( ̄𝑌𝑖. − ̄𝑌..)2

▶ Error sum of squares: SSError = ∑𝑎
𝑖=1 ∑𝑛𝑖

𝑗=1(𝑌𝑖𝑗 − ̄𝑌𝑖.)2

We have SSTot = SSTrt + SSError.
Note that SSTrt is computed just like SSReg in linear regression.

We again define 𝑅2 = SSTrt
SSTot

.
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Sampling distributions of our sums of squares

The SS, appropriately scaled, follow chi-square distributions:

▶ SSTot /𝜎2 ∼ 𝜒2
𝑁−1(𝜙Tot)

▶ SSTrt /𝜎2 ∼ 𝜒2
𝑎−1(𝜙Trt)

▶ SSError /𝜎2 ∼ 𝜒2
𝑁−𝑎,

where 𝜙Tot and 𝜙Trt are noncentrality parameters.
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The mean squares in the one-way ANOVA model

Dividing SSTrt and SSError by their dfs, we define:

▶ Treatment mean square: MSTrt = SSTrt
𝑎 − 1

▶ Error mean square: MSError = SSError
𝑁 − 𝑎

The ratio 𝐹stat = MSTrt
MSError

has an F distribution.
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The Analysis of Variance (ANOVA) table

We often present the SS, df, and MS values in a table like this:

Source Df SS MS F value p-value
Treatment 𝑎 − 1 SSTrt MSTrt 𝐹stat 𝑃(𝐹 > 𝐹stat)
Error 𝑁 − 𝑎 SSError MSError
Total 𝑁 − 1 SSTot

In the table 𝐹stat = MSTrt
MSError

.

The p-value is based on 𝐹 ∼ 𝐹𝑎−1,𝑁−𝑎.
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Rust inhibitors example (cont)

Obtain the ANOVA table with the anova() function on the lm() output.
anova(lm_out)

Analysis of Variance Table

Response: score
Df Sum Sq Mean Sq F value Pr(>F)

as.factor(brand) 3 15954 5317.8 866.12 < 2.2e-16 ***
Residuals 36 221 6.1
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Testing whether there is any difference in treatment means

Given 𝑌𝑖𝑗 = 𝜇 + 𝜏𝑖 + 𝜀𝑖𝑗, 𝑗 = 1, … , 𝑛𝑖, 𝑖 = 1, … , 𝑎, we wish to test

𝐻0: 𝜏𝑖 = 0 for all 𝑖 versus 𝐻1: At least one 𝜏𝑖 is nonzero.

We use the overall F test of significance:

1. Compute 𝐹stat = MSTrt
MSError

2. Reject 𝐻0 at 𝛼 if 𝐹stat > 𝐹𝑎−1,𝑁−𝑎,𝛼.

3. Obtain p-value as 𝑃(𝐹 > 𝐹stat), where 𝐹 ∼ 𝐹𝑎−1,𝑁−𝑎.

The value of 𝐹stat and the p-value are printed in the summary() output.
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Interpretation of F statistic

Note that 𝐹stat is a ratio of the form Between treatment variation
Within treatment variation .
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Exercise: For which data set will the F-statistic be largest/smallest?
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Exercise: Compute 𝐹stat for the rust data using the summary info:

group replicates mean standard deviation
1 10 43.14 3.00
2 10 89.44 2.22
3 10 67.95 2.17
4 10 40.47 2.44

Hint: SSError =
𝑎

∑
𝑖=1

(𝑛𝑖 − 1)𝑆2
𝑖 , where 𝑆2

𝑖 = 1
𝑛𝑖 − 1

𝑛𝑖

∑
𝑗=1

(𝑌𝑖𝑗 − ̄𝑌𝑖.)2
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Some CI formulas (without familywise adjustment)

Target (1 − 𝛼)100% confidence interval

𝜇𝑖 ̄𝑌𝑖. ± 𝑡𝑁−𝑎,𝛼/2�̂�√ 1
𝑛𝑖

𝜇𝑖 − 𝜇𝑖′ ̄𝑌𝑖. − ̄𝑌𝑖′. ± 𝑡𝑁−𝑎,𝛼/2�̂�√ 1
𝑛𝑖

+ 1
𝑛𝑖′
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Post-hoc comparisons of means

▶ If we reject 𝐻0: 𝜇1 = ⋯ = 𝜇𝑎, then we may wish to compare means.
▶ Call such comparisons post-hoc as they follow the F-test.
▶ We may wish to compare several pairs of means, which is like testing

several hypotheses at once.
▶ When several hypotheses are tested at once, the familywise Type I

error rate is the probability that any Type I error is committed.
▶ We discuss two methods for post-hoc comparisons of means which

control the familywise Type I error rate.
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Comparing all pairs of means

▶ We want to build a CI for 𝜇𝑖 − 𝜇𝑖′ for all pairs 𝑖 ≠ 𝑖′.
▶ Suppose the design is balanced, i.e. 𝑛𝑖 = 𝑛 for all 𝑖 = 1, … , 𝑎.
▶ If we build for all 𝑖 ≠ 𝑖′ the ordinary (1 − 𝛼) × 100% CIs

̄𝑌𝑖. − ̄𝑌𝑖′. ± 𝑡𝑎(𝑛−1),𝛼/2�̂�√2/𝑛,

each one will cover its target with probability 1 − 𝛼.
▶ We want simultaneous coverage with probability 1 − 𝛼.
▶ I.e., we want the familywise coverage of all the intervals to be 1 − 𝛼.
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Multiple comparisons of means with Tukey’s HSD

▶ Suppose the design is balanced, i.e. 𝑛𝑖 = 𝑛 for all 𝑖 = 1, … , 𝑎.
▶ Suppose we could find the value 𝑞𝑎,𝑎(𝑛−1),𝛼 such that

𝑃 (max
𝑖≠𝑖′

{|( ̄𝑌𝑖. − ̄𝑌𝑖′.) − (𝜇𝑖 − 𝜇𝑖′)|
�̂�/√𝑛 } ≤ 𝑞𝑎,𝑎(𝑛−1),𝛼) = 1 − 𝛼.

▶ Then with probability 1 − 𝛼 the CIs

̄𝑌𝑖. − ̄𝑌𝑖′. ± 𝑞𝑎,𝑎(𝑛−1),𝛼�̂�/√𝑛

will simultaneously cover the targets 𝜇𝑖 − 𝜇𝑖′ for all 𝑖 ≠ 𝑖′. Show!
▶ Tukey made tables of the values 𝑞𝑎,𝑎(𝑛−1),𝛼.
▶ Can use the simultaneous intervals to sort/compare the means.
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Figure 1: Table A.6 from Mohr, Wilson, and Freund (2021)
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Rust inhibitors example (cont)
For the rust data we have 𝑛 = 10 and 𝑎 = 4.
At 𝛼 = 0.05 we have 𝑞𝑎,𝑎(𝑛−1),𝛼 = 𝑞4,36,0.05 ≈ 3.85 from table.
Obtain exact value with qtukey(.95,4,36) = 3.8087984.
Build the Tukey HSD CI for 𝜇2 − 𝜇1.

n <- 10
a <- 4
MSE <- sum(lm_out$residuals^2) / ( a*(n-1))
y1bar <- mean(rust$score[rust$brand == 1])
y2bar <- mean(rust$score[rust$brand == 2])
me <- qtukey(.95,a,a*(n-1)) * sqrt(MSE) / sqrt(10)
lo21 <- y2bar - y1bar - me
up21 <- y2bar - y1bar + me
c(lo21,up21)

[1] 43.31554 49.28446
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Rust inhibitors example (cont)

Use TukeyHSD() on aov() output to obtain the simultaneous CIs.

# must use the aov() function instead of the lm() function
aov_out <- aov(score ~ as.factor(brand), data = rust)
TukeyHSD(aov_out)

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = score ~ as.factor(brand), data = rust)

$`as.factor(brand)`
diff lwr upr p adj

2-1 46.30 43.315536 49.2844635 0.0000000
3-1 24.81 21.825536 27.7944635 0.0000000
4-1 -2.67 -5.654464 0.3144635 0.0933303
3-2 -21.49 -24.474464 -18.5055365 0.0000000
4-2 -48.97 -51.954464 -45.9855365 0.0000000
4-3 -27.48 -30.464464 -24.4955365 0.0000000
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plot(TukeyHSD(aov_out))
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Comparison of treatments with a baseline treatment

▶ It may be that not all pairwise comparisons are of interest.
▶ Then Tukey’s method is too conservative (CIs wider than necessary).
▶ Say we want to compare all treatments to a “baseline” treatment.
▶ Build CIs for 𝜇𝑖 − 𝜇𝑎, 𝑖 = 1, … , 𝑎 − 1, 𝑎 the baseline treatment.
▶ This is 𝑎 − 1 CIs instead of (𝑎

2) CIs.
▶ Can use Dunnett’s method.
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Dunnett’s method for comparisons with a baseline

▶ Assume 𝑛𝑖 = 𝑛 for all 𝑖 (balanced case).
▶ Given a value 𝑑𝑛,𝑎(𝑛−1),𝛼 such that

𝑃 ( max
1≤𝑖≤𝑎−1

∣ (
̄𝑌𝑖. − ̄𝑌𝑎.) − (𝜇𝑖 − 𝜇𝑎)

�̂�√2/𝑛
∣ ≤ 𝑑𝑛,𝑎(𝑛−1),𝛼) = 1 − 𝛼,

with probability 1 − 𝛼 the CIs

̄𝑌𝑖. − ̄𝑌𝑎. ± 𝑑𝑛,𝑎(𝑛−1),𝛼�̂�√2/𝑛

will simultaneously cover the targets 𝜇𝑖 − 𝜇𝑎 for all 𝑖 = 1, … , 𝑎 − 1.
▶ Dunnett made tables of the values 𝑑𝑛,𝑎(𝑛−1),𝛼.
▶ Cannot sort the means after Dunnett’s.
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Figure 2: Table A.5 from Mohr, Wilson, and Freund (2021)
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Rust inhibitor data (cont)

For the rust data we have 𝑛 = 10 and 𝑎 = 4.
At 𝛼 = 0.05 we have 𝑑𝑎,𝑎(𝑛−1),𝛼 = 𝑑4,36,0.05.
Use value 2.44 in the table (should be close).
Treat Brand 1 as the baseline and make comparisons with Dunnett’s.

y1bar <- mean(rust$score[rust$brand == 1])
y2bar <- mean(rust$score[rust$brand == 2])
lo21 <- y2bar - y1bar - 2.44 * sqrt(MSE) * sqrt(2/10)
up21 <- y2bar - y1bar + 2.44 * sqrt(MSE) * sqrt(2/10)
c(lo21,up21)

[1] 43.59615 49.00385
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Rust inhibitor data (cont)

Use DunnettTest() from R package DescTools.

library(DescTools) # first time run install.packages("DescTools")
Dunnett_out <- DunnettTest(score ~ as.factor(brand), data = rust, control = "1")
Dunnett_out

Dunnett's test for comparing several treatments with a control :
95% family-wise confidence level

$`1`
diff lwr.ci upr.ci pval

2-1 46.30 43.582516 49.017484 <2e-16 ***
3-1 24.81 22.092516 27.527484 <2e-16 ***
4-1 -2.67 -5.387484 0.047484 0.0549 .

---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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plot(Dunnett_out)
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Dunnett’s vs Tukey’s

▶ Tukey’s is for comparisons between all pairs of means.
▶ Dunnett’s is for comparison of means with a baseline.
▶ So Tukey’s must make greater adjustments to control the familywise

Type I error.
▶ Tukey intervals will be wider than Dunnett intervals.
▶ Tukey’s allows you to sort the means, while Dunnett’s does not.
▶ Both methods assume a balanced design, i.e. 𝑛𝑖 = 𝑛 for all 𝑖.

Modifications for unbalanced designs exist, but are not
straightforward to implement in R.
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Bonferroni correction

If building 𝐵 CIs you can ALWAYS use the Bonferroni correction:

▶ Build each CI ordinarily, but use 𝛼/𝐵 instead of 𝛼.
▶ Ensures simultaneous coverage of all CIs with probability ≥ 1 − 𝛼.
▶ True probability of simultaneous coverage may be greater.
▶ Bonferroni-corrected CIs will be wider than Dunnett’s and wider

than Tukey’s if used for making those same comparisons.
▶ Use when we do not know how to adjust for multiple comparisons.
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Rust inhibitor data (cont)

Compare Brand 3 to 4 and Brand 1 to 3, using the Bonferroni correction
to control the familywise error rate.

y1bar <- mean(rust$score[rust$brand == 1])
y3bar <- mean(rust$score[rust$brand == 3])
y4bar <- mean(rust$score[rust$brand == 4])
alpha <- 0.05
B <- 2
me <- qt(1 - (alpha/B)/2,a*(n-1)) * sqrt(MSE) * sqrt(2/n)
tab <- rbind(c(y3bar - y4bar - me,y3bar - y4bar + me),

c(y1bar - y3bar - me,y1bar - y3bar + me))
rownames(tab) <- c("3-4","1-3")
colnames(tab) <- c("lower","upper")
tab

lower upper
3-4 24.888 30.072
1-3 -27.402 -22.218
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Checking model assumptions

Validity of the foregoing analyses depends on these assumptions:

1. The responses are normally distributed around the treatment means
(Check QQ plot of residuals).

2. The response has the same variance in all treatment groups (Check
residuals vs fitted values plot).

3. The response values are independent of each other (No way to
check; must trust experimental design).
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Rust inhibitors example (cont)
plot(lm_out,which = 2)
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Rust inhibitors example (cont)
plot(lm_out,which = 1)
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Perception of slope example

Do axis re-scalings affect how we perceive an x-y relationship?
For a single data set with data pairs (𝑋𝑖, 𝑌𝑖), with 𝑋𝑖 ∼ Normal(0, 1)
and 𝑌𝑖 = Normal(𝑋𝑖, 1) for 𝑖 = 1, … , 50, three scatterplot treatments
were constructed:

1. “Control” used x and y plotting limits given by the range of the data.
2. “X” extended the x-limits by 1.5 in each direction.
3. “Y” extended the y-limits by 1.5 in each direction.

Each student in a class was randomly assigned a scatterplot and told to
draw with a ruler the best-fitting line through the data. The slope of
each student-drawn line was measured and recorded as the response.
Is the response mean the same in the three treatment groups?
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An artifact from each treatment group:

Figure 3: “Control” Figure 4: “X” Figure 5: “Y”

slope <- c(1.23,1.80,1.81,1.29,2.89,1.58,0.99,1.24,
1.26,1.57,1.27,1.19,1.82,1.76,1.91,1.25,
1.09,1.29,1.12,1.51,2.13,1.16,0.62,1.04)

trt <- c("X","Y","X","X","Y","X","Y","C",
"Y","C","C","C","Y","C","X","Y",
"X","X","Y","C","Y","X","Y","C")
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boxplot(slope ~ trt)
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lm_slope <- lm(slope ~ as.factor(trt))
summary(lm_slope)

Call:
lm(formula = slope ~ as.factor(trt))

Residuals:
Min 1Q Median 3Q Max

-0.9222 -0.2847 -0.1293 0.2628 1.3478

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.36857 0.18161 7.536 2.12e-07 ***
as.factor(trt)X 0.05143 0.24868 0.207 0.838
as.factor(trt)Y 0.17365 0.24215 0.717 0.481
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4805 on 21 degrees of freedom
Multiple R-squared: 0.02614, Adjusted R-squared: -0.06661
F-statistic: 0.2818 on 2 and 21 DF, p-value: 0.7572
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plot(lm_slope,which = 2)
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plot(lm_slope,which = 1)
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Levene’s test for equality of variances

Checks if the mean magnitude of the residuals is equal across groups:

1. Obtain the residuals ̂𝜀𝑖𝑗 from the one-way ANOVA model.

2. Treat the absolute values | ̂𝜀𝑖𝑗| of the residuals as new responses.

3. Test for equal means of the new responses with the F test.

So, do the ordinary F-test with the | ̂𝜀𝑖𝑗| as the responses.
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Perception of slope example (cont)
Perform Levene’s test:
ehat <- lm_slope$residuals
lm_levene <- lm(abs(ehat) ~ as.factor(trt))
summary(lm_levene)

Call:
lm(formula = abs(ehat) ~ as.factor(trt))

Residuals:
Min 1Q Median 3Q Max

-0.29136 -0.12769 -0.04980 0.08219 0.79864

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.20980 0.09352 2.243 0.0358 *
as.factor(trt)X 0.05020 0.12805 0.392 0.6990
as.factor(trt)Y 0.33934 0.12469 2.721 0.0128 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2474 on 21 degrees of freedom
Multiple R-squared: 0.303, Adjusted R-squared: 0.2367
F-statistic: 4.565 on 2 and 21 DF, p-value: 0.02258
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Can also use the leveneTest() function in the R package car.

library(car)
leveneTest(slope~as.factor(trt),center = mean)

Levene's Test for Homogeneity of Variance (center = mean)
Df F value Pr(>F)

group 2 4.5652 0.02258 *
21

---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We conclude that the variances are not equal across treatment groups.
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