STAT 516 Lec 05

One-way analysis of variance

Karl Gregory

2024-03-19

Rust inhibitors example

Data from Kutner et al. (2005).

Ten experimental units assigned to each of four brands of rust inhibitors.

```
link <- url("https://people.stat.sc.edu/gregorkb/data/KNNLrust.txt")
rust <- read.csv(link,col.names=c("score","brand","rep"),sep = "", header = FALSE)
head(rust)</pre>
```

	score	brand	rep
1	43.9	1	1
2	39.0	1	2
3	46.7	1	3
4	43.8	1	4
5	44.2	1	5
6	47.7	1	6

Do the brands differ in effectiveness? Is there a best brand?

Randomized experiments comparing treatments

Start with N experimental units (EUs), e.g. subjects, mice, etc. Randomly assign each EU to one of a treatment groups. Measure on each EU after treatment a response Y. Compute the average of the responses in each treatment group... Questions we'd like to answer:

- Is the response mean the same in all treatment groups? If not, then which pairs of means are different?

One-way ANOVA setup

Consider the model

$$Y_{ij}=\mu+\tau_i+\varepsilon_{ij},\quad j=1,\ldots,n_i,\quad i=1,\ldots,a,$$

where

Y_{ij} is the response for EU j in treatment group i.
μ represents an overall or baseline mean.
τ_i is the treatment effect for treatment i.
The ε_{ij} are independent Normal(0, σ²) error terms.
The n_i are the numbers of replicates in the treatment groups.

Of central interest are the hypotheses

 H_0 : $\tau_i = 0$ versus H_1 : At least one τ_i is nonzero.

If we reject H_0 , we may wish to sort/compare the treatments.

Parameter constraints in the treatment effects model

The model has a + 1 parameters to describe a treatment means.

To identify $\mu,\,\tau_1,\ldots,\tau_a$ uniquely, we impose one of these constraints:

1. To give μ a baseline interpretation, set

 $\tau_a = 0.$

2. To give μ an overall mean interpretation, set

$$\sum_{i=1}^{a} n_i \tau_i = 0.$$

Alternative "cell means model" setup

An alternate version of the model is

$$Y_{ij}=\mu_i+\varepsilon_{ij},\quad j=1,\ldots,n_i,\quad i=1,\ldots,a,$$

where

In this version of the model the central hypotheses become

$$H_0:\ \mu_1=\dots=\mu_a \quad \text{ versus } \quad H_1:\ \mu_i\neq\mu_i' \text{ for some } i\neq i'.$$

Goals in one-way ANOVA

Under the one-way ANOVA setup

$$Y_{ij}=\mu+\tau_i+\varepsilon_{ij},\quad j=1,\ldots,n_i,\quad i=1,\ldots,a,$$

where $\varepsilon_{ij} \stackrel{\mathrm{ind}}{\sim} \operatorname{Normal}(0, \sigma^2)$, we wish to

- 1. Visualize the data.
- 2. Estimate the parameters $\mu, \tau_1, \dots, \tau_a$
- 3. Estimate the error term variance σ^2 .
- 4. Decompose the variation in the Y_{ij} as signal plus noise.
- 5. Test whether there is any difference in treatment group means.
- 6. Sort/compare the treatment means if there is any difference.
- 7. Check whether the model assumptions are satisfied.

Rust inhibitors example (cont)

Visually compare the means of several treatment groups with boxplots.

brand

Treatment effect estimation in one-way ANOVA

Let
$$N=n_1+\cdots+n_a$$
 and define

$$\bar{Y}_{..} = \frac{1}{N} \sum_{i=1}^{a} \sum_{j=1}^{n_i} Y_{ij} \quad \text{ and } \quad \bar{Y}_{i.} = \frac{1}{n_i} \sum_{j=1}^{n_i} Y_{ij}, \quad \text{ for } i = 1, \ldots, a.$$

1. Under the μ -as-baseline constraint, set

$$\hat{\mu} = \bar{Y}_{a.} \quad \text{ and } \quad \hat{\tau}_i = \bar{Y}_{i.} \quad \text{ for } i = 1, \dots, a-1.$$

2. Under the μ -as-overall-mean constraint, set

$$\hat{\mu} = \bar{Y}_{\! ..} \quad \text{and} \quad \hat{\tau}_i = \bar{Y}_{\! i.} - \bar{Y}_{\! ..} \quad \text{for } i = 1, \ldots, a.$$

Both ways give $\hat{Y}_{ij}=\hat{\mu}+\hat{\tau}_i=\bar{Y}_{i.}$ for $i=1,\ldots,a.$

Rust inhibitors example (cont)

R uses by default the deviations from baseline parameterization:

```
# use as.factor() to designate brand as a "factor"
lm_out <- lm(score ~ as.factor(brand), data = rust)
lm_out</pre>
```

```
Call:

lm(formula = score ~ as.factor(brand), data = rust)

Coefficients:

(Intercept) as.factor(brand)2 as.factor(brand)3 as.factor(brand)4

43.14 46.30 24.81 -2.67
```

see how these are obtained from the group means
aggregate(rust\$score, by = list(rust\$brand), FUN = mean)

Group.1 x 1 1 43.14 2 2 89.44 3 3 67.95 4 4 40.47

Estimation of the error term variance σ^2

As in linear regression, define the

$$\begin{array}{l} \bullet \quad \underbrace{\text{fitted values}}_{\text{residuals}} \hat{Y}_{ij} \text{ as } \hat{Y}_{ij} = \bar{Y}_{i.} \text{ for } j = 1, \ldots, n_i \text{, and the} \\ \bullet \quad \underbrace{\text{residuals}}_{ij} \hat{\varepsilon}_{ij} \text{ as } \hat{\varepsilon}_{ij} = Y_{ij} - \bar{Y}_{i.} \end{array}$$

for
$$j=1,\ldots,n_i, i=1,\ldots,a.$$

Then an unbiased estimator of σ^2 is given by

$$\hat{\sigma}^2 = \frac{1}{N-a} \sum_{i=1}^a \sum_{j=1}^{n_i} \hat{\varepsilon}_{ij}^2 = \frac{1}{N-a} \sum_{i=1}^a \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y_{i.}})^2.$$

Divide by N-a since the N residuals depend on a estimated quantities...

Rust inhibitors example (cont)

```
tab <- cbind(rust$brand,rust$score,lm_out$fitted.values,lm_out$residuals)
colnames(tab) <- c("brand","score","Fitted value","Residual")
head(tab,n = 13)</pre>
```

	brand	score	Fitted	value	Residual
1	1	43.9		43.14	0.76
2	1	39.0		43.14	-4.14
3	1	46.7		43.14	3.56
4	1	43.8		43.14	0.66
5	1	44.2		43.14	1.06
6	1	47.7		43.14	4.56
7	1	43.6		43.14	0.46
8	1	38.9		43.14	-4.24
9	1	43.6		43.14	0.46
10	1	40.0		43.14	-3.14
11	2	89.8		89.44	0.36
12	2	87.1		89.44	-2.34
13	2	92.7		89.44	3.26

sgsqhat <- sum(lm_out\$residuals^2) / (nrow(rust) - 4)
sgsqhat</pre>

[1] 6.139833

The value of $\hat{\sigma}$ is printed in the summary() output:

summarv(lm out)

```
Call:
lm(formula = score ~ as.factor(brand), data = rust)
Residuals:
  Min 10 Median 30
                            Max
-4.270 -1.597 0.395 1.275 4.730
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept)
               43.1400 0.7836 55.056 <2e-16 ***
as.factor(brand)2 46.3000 1.1081 41.782 <2e-16 ***
as.factor(brand)3 24.8100 1.1081 22.389 <2e-16 ***
as_factor(brand)4 - 2.6700 1.1081 - 2.409 0.0212 *
___
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 2.478 on 36 degrees of freedom Multiple R-squared: 0.9863, Adjusted R-squared: 0.9852 F-statistic: 866.1 on 3 and 36 DF, p-value: < 2.2e-16

Sums of squares in the one-way ANOVA model

As in linear regression we decompose the variation in the Y_{ij} by defining:

Total sum of squares: SS_{Tot} =
$$\sum_{i=1}^{a} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_{..})^2$$
Treatment sum of squares: SS_{Trt} = $\sum_{i=1}^{a} n_i (\bar{Y}_{i.} - \bar{Y}_{..})^2$
Error sum of squares: SS_{Error} = $\sum_{i=1}^{a} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_{i.})^2$

We have $SS_{Tot} = SS_{Trt} + SS_{Error}$. Note that SS_{Trt} is computed just like SS_{Reg} in linear regression. We again define $R^2 = \frac{SS_{Trt}}{CC}$.

$$SS_{Tot}$$

Sampling distributions of our sums of squares

The SS, appropriately scaled, follow chi-square distributions:

$$\begin{split} &\blacktriangleright \ \mathrm{SS}_{\mathrm{Tot}} \, / \sigma^2 \sim \chi^2_{N-1}(\phi_{\mathrm{Tot}}) \\ &\blacktriangleright \ \mathrm{SS}_{\mathrm{Trt}} \, / \sigma^2 \sim \chi^2_{a-1}(\phi_{\mathrm{Trt}}) \\ &\blacktriangleright \ \mathrm{SS}_{\mathrm{Error}} \, / \sigma^2 \sim \chi^2_{N-a}, \end{split}$$

where $\phi_{\rm Tot}$ and $\phi_{\rm Trt}$ are noncentrality parameters.

The mean squares in the one-way ANOVA model

Dividing $\mathrm{SS}_{\mathrm{Trt}}$ and $\mathrm{SS}_{\mathrm{Error}}$ by their dfs, we define:

Treatment mean square: MS_{Trt} =
$$\frac{SS_{Trt}}{a-1}$$
 Error mean square: MS_{Error} = $\frac{SS_{Error}}{N-a}$

The ratio $F_{\rm stat} = \frac{\rm MS_{Trt}}{\rm MS_{Error}}$ has an F distribution.

The Analysis of Variance (ANOVA) table

We often present the SS, df, and MS values in a table like this:

Source	Df	SS	MS	F value	p-value
Treatment Error Total	$\begin{array}{c} a-1\\ N-a\\ N-1 \end{array}$	$\begin{array}{c} \mathrm{SS}_{\mathrm{Trt}} \\ \mathrm{SS}_{\mathrm{Error}} \\ \mathrm{SS}_{\mathrm{Tot}} \end{array}$	$\begin{array}{l} \mathrm{MS}_{\mathrm{Trt}} \\ \mathrm{MS}_{\mathrm{Error}} \end{array}$	$F_{\rm stat}$	$P(F > F_{\rm stat})$

In the table $F_{\rm stat} = {{\rm MS}_{\rm Trt}\over {\rm MS}_{\rm Error}}.$

The p-value is based on $F \sim F_{a-1,N-a}.$

Rust inhibitors example (cont)

Obtain the ANOVA table with the anova() function on the lm() output.

anova(lm_out)

Analysis of Variance Table Response: score Df Sum Sq Mean Sq F value Pr(>F) as.factor(brand) 3 15954 5317.8 866.12 < 2.2e-16 *** Residuals 36 221 6.1 ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Testing whether there is any difference in treatment means

Given
$$Y_{ij} = \mu + \tau_i + \varepsilon_{ij}$$
, $j = 1, ..., n_i$, $i = 1, ..., a$, we wish to test
 H_0 : $\tau_i = 0$ for all i versus H_1 : At least one τ_i is nonzero.

We use the overall F test of significance:

1. Compute
$$F_{\text{stat}} = \frac{\text{MS}_{\text{Trt}}}{\text{MS}_{\text{Error}}}$$

2. Reject H_0 at α if $F_{\text{stat}} > F_{a-1,N-a,\alpha}$

3. Obtain p-value as $P(F>F_{\rm stat}) \mbox{, where } F \sim F_{a-1,N-a}.$

The value of $F_{\rm stat}$ and the p-value are printed in the summary() output.

Interpretation of F statistic

Note that F_{stat} is a ratio of the form $\frac{\text{Between treatment variation}}{\text{Within treatment variation}}$

Exercise: For which data set will the F-statistic be largest/smallest?

 $\mbox{Exercise:}$ Compute $F_{\rm stat}$ for the rust data using the summary info:

group	replicates	mean	standard deviation
1	10	43.14	3.00
2	10	89.44	2.22
3	10	67.95	2.17
4	10	40.47	2.44

$$\text{Hint: } \text{SS}_{\text{Error}} = \sum_{i=1}^{a} (n_i - 1) S_i^2 \text{, where } S_i^2 = \frac{1}{n_i - 1} \sum_{j=1}^{n_i} (Y_{ij} - \bar{Y}_{i.})^2$$

Some CI formulas (without familywise adjustment)

Target	$(1-\alpha)100\%$ confidence interval
$\overline{\mu_i}$	$\bar{Y}_{i.} \pm t_{N-a,\alpha/2} \hat{\sigma} \sqrt{\frac{1}{n_i}}$
$\mu_i-\mu_{i'}$	$\bar{Y}_{i.} - \bar{Y}_{i'.} \pm t_{N-a,\alpha/2} \hat{\sigma} \sqrt{\frac{1}{n_i} + \frac{1}{n_{i'}}}$

Post-hoc comparisons of means

- If we reject H_0 : $\mu_1 = \dots = \mu_a$, then we may wish to compare means.
- Call such comparisons post-hoc as they follow the F-test.
- We may wish to compare several pairs of means, which is like testing several hypotheses at once.
- When several hypotheses are tested at once, the familywise Type I error rate is the probability that any Type I error is committed.
- We discuss two methods for post-hoc comparisons of means which control the familywise Type I error rate.

Comparing all pairs of means

- We want to build a CI for $\mu_i \mu_{i'}$ for all pairs $i \neq i'$.
- Suppose the design is <u>balanced</u>, i.e. $n_i = n$ for all i = 1, ..., a.
- ▶ If we build for all $i \neq i'$ the ordinary $(1 \alpha) \times 100\%$ CIs

$$\bar{Y}_{i.}-\bar{Y}_{i'.}\pm t_{a(n-1),\alpha/2}\hat{\sigma}\sqrt{2/n},$$

each one will cover its target with probability $1 - \alpha$.

- We want simultaneous coverage with probability 1α .
- l.e., we want the familywise coverage of all the intervals to be 1α .

Multiple comparisons of means with Tukey's HSD

Suppose the design is <u>balanced</u>, i.e. $n_i = n$ for all i = 1, ..., a.

Suppose we could find the value $q_{a,a(n-1),lpha}$ such that

$$P\left(\max_{i\neq i'}\left\{\frac{|(\bar{Y}_{i.}-\bar{Y}_{i'.})-(\mu_i-\mu_{i'})|}{\hat{\sigma}/\sqrt{n}}\right\}\leq q_{a,a(n-1),\alpha}\right)=1-\alpha.$$

Then with probability $1 - \alpha$ the CIs

$$\bar{Y}_{i.}-\bar{Y}_{i'.}\pm q_{a,a(n-1),\alpha}\hat{\sigma}/\sqrt{n}$$

will simultaneously cover the targets $\mu_i - \mu_{i'}$ for all $i \neq i'$. Show!

Can use the simultaneous intervals to sort/compare the means.

lo the	be counter	T = Number of Groups						
Error df	Two-sided a	2	3	4	5	6	7	8
5	0.05	3.64	4.6	5.22	5.67	6.03	6.33	6.58
5	0.01	5.70	6.98	7.80	8.42	8.91	9.32	9.67
6	0.05	3.46	4 3.4	4.90	5.30	5.63	5.90	6.12
6	0.01	5.24	6.33	7.03	7.56	7.97	8.32	8.61
7	0.05	3.34	4.16	4.68	5.06	5.36	5.61	5.82
7	0.01	4.95	5.92	6.54	7.00	7.37	7.68	7.94
8	0.05	3.26	4.04	4.53	4.89	5.17	5.40	5.60
8	0.01	4.75	5.64	6.20	6.62	6.96	7.24	7.47
9	0.05	3.20	3.95	4.41	4.76	5.02	5.24	5.43
9	0.01	4.60	5.43	5.96	6.35	6.66	6.91	7.13
10	0.05	3.15	3.88	4.33	4.65	4.91	5.12	5.30
10	0.01	4.48	5.27	5.77	6.14	6.43	6.67	6.87
11	0.05	3.11	3.82	4.26	4.57	4.82	5.03	5.20
11	0.01	4.39	5.15	5.62	5.97	6.25	6.48	6.67
12	0.05	3.08	3.77	4.20	4.51	4.75	4.95	5.12
12	0.01	4.32	5.05	5.50	5.84	6.1	6.32	6.51
13	0.05	3.06	3.73	4.15	4.45	4.69	4.88	5.05
13	0.01	4.26	4.96	5.40	5.73	5.98	6.19	6.37
14	0.05	3.03	3.70	4.11	4.41	14.64	4.83	4.99
14	0.01	4.21	4.89	5.32	5.63	5.88	6.08	6.26
15	0.05	3.01	3.67	4.08	4.37	4.59	4.78	4.94
15	0.01	4.17	4.84	5.25	5.56	5.80	5.99	6.16
16	0.05	3.00	3.65	4.05	4.33	4.56	4.74	4.90
16	0.01	4.13	4.79	5.19	5.49	5.72	5.91	6.08
17	0.05	2.98	3.63	4.02	4.30	4.52	4.70	4.86
17	0.01	4.10	4.74	5.14	5.43	5.66	5.85	6.01
18	0.05	2.97	3.61	4.00	4.28	4.49	4.67	4.82
18	0.01	4.07	4.70	5.09	5.38	5.60	5.79	5.94
19	0.05	2.96	3.59	3.98	4.25	4.47	4.65	4.79
19	0.01	4.05	4.67	5.05	5.33	5.55	5.73	5.89
20	0.05	2.95	3.58	3.96	4.23	4.45	4.62	4.77
20	0.01	4.02	4.64	5.02	5.29	5.51	5.69	5.84
25	0.05	2.91	3.52	3.89	4.15	4.36	4.53	4.67
25	0.01	3.94	4.53	4.88	5.14	5.35	5.51	5.65
30	0.05	2.89	3.49	3.85	4.10	4.30	4.46	4.60
30	0.01	3.89	4.45	4.80	5.05	5.24	5.40	5.54
40	0.05	2.86	3.44	3.79	4.04	4.23	4.39	4.52
40	0.01	3.82	4.37	4.69	4.93	5.11	5.26	5.39
60	0.05	2.83	3.40	3.74	3.98	4.16	4.31	4.44
60	0.01	3.76	4.28	4.59	4.82	4.99	5.13	5.25

Table A.6 Critical Values of the Studentized Range, for Tukey's HSD.

Table produced using the SAS System using function PROBMC('SRANGE', 1 - 0, df, T).

Figure 1: Table A.6 from Mohr, Wilson, and Freund (2021)

Rust inhibitors example (cont)

For the rust data we have n = 10 and a = 4.

At $\alpha = 0.05$ we have $q_{a,a(n-1),\alpha} = q_{4,36,0.05} \approx 3.85$ from table. Obtain exact value with qtukey(.95,4,36) = 3.8087984. Build the Tukey HSD CI for $\mu_2 - \mu_1$.

```
n <- 10
a <- 4
MSE <- sum(lm_out$residuals^2) / ( a*(n-1))
y1bar <- mean(rust$score[rust$brand == 1])
y2bar <- mean(rust$score[rust$brand == 2])
me <- qtukey(.95,a,a*(n-1)) * sqrt(MSE) / sqrt(10)
lo21 <- y2bar - y1bar - me
up21 <- y2bar - y1bar + me
c(lo21,up21)
```

[1] 43.31554 49.28446

Rust inhibitors example (cont)

Use TukeyHSD() on aov() output to obtain the simultaneous Cls.

```
# must use the aov() function instead of the lm() function
aov_out <- aov(score ~ as.factor(brand), data = rust)
TukeyHSD(aov out)
```

```
Tukey multiple comparisons of means 95% family-wise confidence level
```

Fit: aov(formula = score ~ as.factor(brand), data = rust)

\$`as.factor(brand)`

	diff	lwr	upr	p adj
2-1	46.30	43.315536	49.2844635	0.000000
3-1	24.81	21.825536	27.7944635	0.000000
4-1	-2.67	-5.654464	0.3144635	0.0933303
3-2	-21.49	-24.474464	-18.5055365	0.000000
4-2	-48.97	-51.954464	-45.9855365	0.000000
4-3	-27.48	-30.464464	-24.4955365	0.000000

plot(TukeyHSD(aov_out))

95% family-wise confidence level

Differences in mean levels of as.factor(brand)

Comparison of treatments with a baseline treatment

- It may be that not all pairwise comparisons are of interest.
- Then Tukey's method is too conservative (Cls wider than necessary).
- Say we want to compare all treatments to a "baseline" treatment.
- Build CIs for $\mu_i \mu_a$, i = 1, ..., a 1, a the baseline treatment.
- This is a-1 Cls instead of $\binom{a}{2}$ Cls.

Can use Dunnett's method.

Dunnett's method for comparisons with a baseline

Assume $n_i = n$ for all i (balanced case).

For Given a value $d_{n,a(n-1),\alpha}$ such that

$$P\left(\max_{1\leq i\leq a-1}\Big|\frac{(\bar{Y}_{i.}-\bar{Y}_{a.})-(\mu_i-\mu_a)}{\hat{\sigma}\sqrt{2/n}}\Big|\leq d_{n,a(n-1),\alpha}\right)=1-\alpha,$$

with probability $1-\alpha$ the CIs

$$\bar{Y}_{i.}-\bar{Y}_{a.}\pm d_{n,a(n-1),\alpha}\hat{\sigma}\sqrt{2/n}$$

will simultaneously cover the targets $\mu_i - \mu_a$ for all $i = 1, \dots, a - 1$.

- Dunnett made tables of the values $d_{n,a(n-1),\alpha}$.
- Cannot sort the means after Dunnett's.

		T = Number of Groups Counting Both Treatments						s and Control	
Error df	Two-sided α	2	3	4	5	6	7	8	
5	0.05	2.57	3.03	3.29	3.48	3.62	3.73	3.82	
5	0.01	4.03	4.63	4.97	5.22	5.41	5.56	5.68	
6	0.05	2.45	2.86	3.10	3.26	3.30	3.40	3.57	
6	0.01	3.71	4.21	4.51	4 71	4.87	5.00	5.10	
7	0.05	2.36	2.75	2.97	3.12	3.24	3.33	3.41	
7	0.01	3.50	3.95	4.21	4 39	4.53	4 64	4.74	
8	0.05	2.31	2.67	2.88	3.02	3.13	3.22	3.29	
8	0.01	3.36	3.77	4.00	4.17	1.20	4.40	4.48	
9	0.05	2.26	2.61	2.81	2.05	3.05	3.14	3.20	
9	0.01	3.25	3.63	3.85	4.01	4.12	4.22	4.30	
10	0.05	2.23	2.57	2.76	2.89	2.99	3.07	3.14	
10	0.01	3.17	3.53	3.74	3.88	3.99	4.08	4.16	
11	0.05	2.20	2.53	2.72	2.84	2.94	3.02	3.08	
11	0.01	3.11	3.45	3.65	3.79	3.89	3.98	4.05	
12	0.05	2.18	2.50	2.68	2.81	2.90	2.98	3.04	
12	0.01	3.05	3.39	3.58	3.71	3.81	3.89	3.96	
13	0.05	2.16	2.48	2.65	2.78	2.87	2.94	3.00	
13	0.01	3.01	3.33	3.52	3.65	3.74	3.82	3.89	
14	0.05	2.14	2.46	2.63	2.75	2.84	2.91	2.97	
14	0.01	2.98	3.29	3.47	3.59	3.69	3.76	3.83	
15	0.05	2.13	2.44	2.61	2.73	2.82	2.89	2.95	
15	0.01	2.95	3.25	3.43	3.55	3.64	3.71	3.78	
16	0.05	2.12	2.42	2.59	2.71	2.80	2.87	2.92	
16	0.01	2.92	3.22	3.39	3.51	3.60	3.67	3.73	
17	0.05	2.11	2.41	2.58	2.69	2.78	2.85	2.90	
17	0.01	2.90	3.19	3.36	3.47	3.56	3.63	3.69	
19	0.05	2.10	2,40	2.56	2.68	2.76	2.83	2.89	
18	0.01	2.88	3.17	3.33	3.44	3.53	3.60	3.66	
10	0.05	2.09	2.39	2.55	2.66	2.75	2.81	2.87	
19	0.01	2.86	3.15	3.31	3.42	3.50	3.57	3.63	
20	0.05	2.09	2.38	2.54	2.65	2.73	2.80	2.86	
20	0.01	2.85	3.13	3.29	3.40	3.48	3.55	5.60	
25	0.05	2.06	2.34	2.50	2.61	2.69	2.75	2.81	
25	0.01	2.79	3.06	3.21	3.31	3.39	3.45	3.51	
30	0.05	2.04	2.32	2.47	2.58	2.60	2.72	2.17	
30	0.01	2.75	3.01	3.15	3.25	3.35	3.59	3.44	
40	0.05	2.02	2.29	2.44	2.54	2.62	2.08	2.75	
40	0.01	2.70	2.95	3.09	3.19	3.20	3.32	3.37	
60	0.05	2.00	2.27	2.41	2.51	2.58	2.04	2.69	
60	0.05	2.66	2.90	3.03	3.12	3.19	3.25	3.29	

Table A.5 Critical Values for Dunnett's Two-Sided Test of Treatments versus Control.

Figure 2: Table A.5 from Mohr, Wilson, and Freund (2021)

Rust inhibitor data (cont)

For the rust data we have n = 10 and a = 4.

At $\alpha=0.05$ we have $d_{a,a(n-1),\alpha}=d_{4,36,0.05}.$

Use value 2.44 in the table (should be close).

Treat Brand 1 as the baseline and make comparisons with Dunnett's.

```
y1bar <- mean(rust$score[rust$brand == 1])
y2bar <- mean(rust$score[rust$brand == 2])
lo21 <- y2bar - y1bar - 2.44 * sqrt(MSE) * sqrt(2/10)
up21 <- y2bar - y1bar + 2.44 * sqrt(MSE) * sqrt(2/10)
c(lo21,up21)</pre>
```

[1] 43.59615 49.00385

Rust inhibitor data (cont)

Use DunnettTest() from R package DescTools.

```
library(DescTools) # first time run install.packages("DescTools")
Dunnett_out <- DunnettTest(score ~ as.factor(brand), data = rust, control = "1")
Dunnett_out</pre>
```

Dunnett's test for comparing several treatments with a control : 95% family-wise confidence level

\$`1`

 diff
 lwr.ci
 upr.ci
 pval

 2-1
 46.30
 43.582516
 49.017484
 <2e-16</td>

 3-1
 24.81
 22.092516
 27.527484
 <2e-16</td>

 4-1
 -2.67
 -5.387484
 0.047484
 0.0549
 .

---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

plot(Dunnett_out)

95% family-wise confidence level

Differences in mean levels of 1

Dunnett's vs Tukey's

- Tukey's is for comparisons between all pairs of means.
- Dunnett's is for comparison of means with a baseline.
- So Tukey's must make greater adjustments to control the familywise Type I error.
- Tukey intervals will be wider than Dunnett intervals.
- Tukey's allows you to sort the means, while Dunnett's does not.
- Both methods assume a balanced design, i.e. n_i = n for all i. Modifications for unbalanced designs exist, but are not straightforward to implement in R.

Bonferroni correction

If building $B\ {\rm CIs}$ you can ALWAYS use the Bonferroni correction:

- Build each CI ordinarily, but use α/B instead of α .
- Ensures simultaneous coverage of all CIs with probability $\geq 1 \alpha$.
- True probability of simultaneous coverage may be greater.
- Bonferroni-corrected CIs will be wider than Dunnett's and wider than Tukey's if used for making those same comparisons.
- Use when we do not know how to adjust for multiple comparisons.

Rust inhibitor data (cont)

Compare Brand 3 to 4 and Brand 1 to 3, using the Bonferroni correction to control the familywise error rate.

lower upper 3-4 24.888 30.072 1-3 -27.402 -22.218

Checking model assumptions

Validity of the foregoing analyses depends on these assumptions:

- 1. The responses are normally distributed around the treatment means (Check QQ plot of residuals).
- 2. The response has the same variance in all treatment groups (Check residuals vs fitted values plot).
- 3. The response values are independent of each other (No way to check; must trust experimental design).

Rust inhibitors example (cont)

plot(lm_out,which = 2)

41/52

Rust inhibitors example (cont)

plot(lm_out,which = 1)

42 / 52

Perception of slope example

Do axis re-scalings affect how we perceive an x-y relationship?

For a single data set with data pairs (X_i,Y_i) , with $X_i \sim \text{Normal}(0,1)$ and $Y_i = \text{Normal}(X_i,1)$ for $i = 1, \dots, 50$, three scatterplot treatments were constructed:

- 1. "Control" used x and y plotting limits given by the range of the data.
- 2. "X" extended the x-limits by 1.5 in each direction.
- 3. "Y" extended the y-limits by 1.5 in each direction.

Each student in a class was randomly assigned a scatterplot and told to draw with a ruler the best-fitting line through the data. The slope of each student-drawn line was measured and recorded as the response.

Is the response mean the same in the three treatment groups?

An artifact from each treatment group:

Figure 3: "Control"

boxplot(slope ~ trt)

trt

```
lm_slope <- lm(slope ~ as.factor(trt))
summary(lm_slope)</pre>
```

Call: lm(formula = slope ~ as.factor(trt)) Residuals: Min 1Q Median 3Q Max -0.9222 -0.2847 -0.1293 0.2628 1.3478 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 1.36857 0.18161 7.536 2.12e-07 *** as.factor(trt)X 0.05143 0.24868 0.207 0.838 as.factor(trt)Y 0.17365 0.24215 0.717 0.481 ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4805 on 21 degrees of freedom Multiple R-squared: 0.02614, Adjusted R-squared: -0.06661 F-statistic: 0.2818 on 2 and 21 DF, p-value: 0.7572

Q-Q Residuals

Im(slope ~ as.factor(trt))

plot(lm_slope,which = 1)

Levene's test for equality of variances

Checks if the mean magnitude of the residuals is equal across groups:

- 1. Obtain the residuals $\hat{\varepsilon}_{ij}$ from the one-way ANOVA model.
- 2. Treat the absolute values $|\hat{\varepsilon}_{ij}|$ of the residuals as *new* responses.
- 3. Test for equal means of the new responses with the F test.

So, do the ordinary F-test with the $|\hat{\varepsilon}_{ij}|$ as the responses.

Perception of slope example (cont)

Perform Levene's test:

```
ehat <- lm_slope$residuals
lm_levene <- lm(abs(ehat) ~ as.factor(trt))
summary(lm_levene)</pre>
```

```
Call:
lm(formula = abs(ehat) ~ as.factor(trt))
```

Residuals: Min 1Q Median 3Q Max -0.29136 -0.12769 -0.04980 0.08219 0.79864

Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.20980 0.09352 2.243 0.0358 * as.factor(trt)X 0.05020 0.12805 0.392 0.6990 as.factor(trt)Y 0.33934 0.12469 2.721 0.0128 * ---Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2474 on 21 degrees of freedom Multiple R-squared: 0.303, Adjusted R-squared: 0.2367 F-statistic: 4.565 on 2 and 21 DF, p-value: 0.02258 Can also use the leveneTest() function in the R package car.

We conclude that the variances are *not* equal across treatment groups.

References

Kutner, Michael H, Christopher J Nachtsheim, John Neter, and William Li. 2005. Applied Linear Statistical Models. McGraw-hill.
Mohr, Donna L, William J Wilson, and Rudolf J Freund. 2021. Statistical Methods. Academic Press.