STAT 516 sp 2024 exam 01

75 minutes, no calculators or notes allowed

1. Simple linear regression

Below is a scatterplot of $n=40$ data points $\left(x_{1}, Y_{1}\right), \ldots,\left(x_{40}, Y_{40}\right)$ with the least squares line overlaid.

```
plot ( \(\mathrm{Y} \sim \mathrm{x}\) )
abline(lm(Y~x))
```


$\operatorname{summary}(\operatorname{lm}(\mathrm{Y} \sim \mathrm{x}))$
Call:
$\operatorname{lm}($ formula $=Y \sim x$)
Residuals:

Min	IQ	Median	SQ	Max
-4.5336	-0.6735	0.0845	0.7369	3.3597

Coefficients:

	Estimate	Std. Error t value $\operatorname{Pr}(>\mid \mathrm{t\mid})$		
(Intercept)	1.87442	0.45380	4.131	0.000191

Signif. codes: $0{ }^{\prime * * * ' ~} 0.001{ }^{\prime * * '} 0.01 '^{\prime \prime} 0.05 '^{\prime} .0 .1$ ' ' 1

Residual standard error: 1.389 on 38 degrees of freedom
Multiple R-squared: 0.2054 , Adjusted R-squared: 0.1845
F-statistic: 9.824 on 1 and 38 DF, p-value: 0.003315

Some of the following questions refer to the above R output; some are general questions that you can answer without referring to the R output.
(a) What do we call the quantity $\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}_{n}\right)^{2}$ and what does it represent?

This is the total sum of squares.
It represents the total amount of variability in the values of Y.
(b) What do we call the quantity $\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}_{n}\right)^{2}$ and what does it represent?

This is the regression sun of squares.
It represents the amount of variability in Y accounted for by considering the predictor x.
(c) Give the value shown in the R output for $\frac{\sum_{i=1}^{n}\left(\hat{Y}_{i}-\bar{Y}_{n}\right)^{2}}{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}_{n}\right)^{2}}$. Interpret the value. This $R^{2}=\frac{S S_{R y}}{8 S_{r_{0} t}}=0.2050$.

The predictor x is isle to explain $20.5 \%_{0}$ of the variability in 1.
(d) Obtain the value of $\frac{\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}}{n-2}$ from the R output. What does it estimate?

This is $(1.389)^{2}$. It estimates the error term variance σ^{2},
while 1.389 estimates the error term standard deviation σ.
(e) Give the values of $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ from the R output. Give an interpretation of $\hat{\beta}_{1}$.

We have $\hat{\beta}_{0}=1.874$ and $\hat{\beta}_{1}=-0.234$.
If x is increend by 1 unit, the expected value \mathscr{A} is estimated to decree by 0.234 .
(f) Confidence intervals for $\beta_{0}+\beta_{1} x_{\text {new }}$ as well as prediction intervals for $Y_{\text {new }}$ at new values of the predictor $x_{\text {new }}=5$ and $x_{\text {new }}=9$ are given below. For each interval, indicate whether it is a CI or a PI and indicate to which value of $x_{\text {new }}$ it corresponds.
i. (-3.13, 2.67) Widest, so PI for anew $t x_{\text {new }}=9$
CI.
[ii. $(0.26,1.15)$ Narrowest, so $C I$ for $\beta_{0}+\beta_{1} x_{\text {new }}+x_{n e w}=5$
iii. (-0.94, 0.48) second narrowest, so $C I$ for $\beta_{0}+\beta_{1} x_{\text {new }}+x_{n e w}=9$
iv. ($-2.14,3.55$) Second widest, so PI for Yew at $x_{\text {new }}=5$
$\begin{array}{r}1.67 \\ 2.67 \\ \hline 3.80\end{array}$
2.14
55
$\frac{3.55}{5.69}$
(g) Circle a data point on the scatterplot which would have a large value of Cook's D. Explain your choice of data point.
This data point is for from the mean of the x values (so it his high leverage) and it is also for from the other data points vertically. It will cart a strong influence on the least squares line.
(h) Circle a data point on the scatterplot which would have a small value of Cook's D. Explain your choice of data point.
This date point reinforces the pattern formed by the majority of the data ports. Moreover it has small leverage sines it is clonk to the user.
(i) There is a p-value which appears twice in the R output. Explain why the same p-value appears twice.
The p-value 0.003315 is the p-rdin fo testing

$$
H_{0}: \beta_{1}=0 \text { us } H_{1}: \beta_{1} \neq 0
$$

Sine there is orly a single production variable, the overall F-tact for significance tests the same null and alternate hypotheses. So the p-ucloe is the same.
(j) Scatterplots of four different data sets are shown below. Indicate for which data set the value of $F_{\text {stat }}=\frac{\mathrm{MS}_{\text {Reg }}}{\mathrm{MS}_{\text {Error }}}$ would be
a. the greatest.
b. the smallest.

x
x

x

2. Multiple linear regression

The plot below shows scatterplots between all pairs of variables in a data set. Following that is some regression output.

```
plot(data)
```


Call:
$\operatorname{lm}($ formula $=Y \sim x 1+x 2+x 3$, data $=$ data)

Residuals:

Min	$1 Q$	Median	3Q	Max
-3.0473	-0.8223	-0.0535	0.6444	3.9421

Coefficients:

	Estimate	. Error	value	$\operatorname{Pr}(>\|t\|)$	
(Intercept)	0.43876	0.74379	0.590	0.55664	
x 1	-0.05382	0.08834	-0.609	0.54385	
x 2	0.42276	0.12841	3.292	0.00139 *	**
x3	0.02437	0.09137	0.267	0.79025	

Residual standard error: 1.194 on 96 degrees of freedom Multiple R-squared: 0.1277, Adjusted R-squared: 0.1004 F-statistic: 4.684 on 3 and 96 DF, p-value: 0.00426

```
lm2 <- lm(Y ~ x2, data = data)
summary(lm2)
```

Call:
$\operatorname{lm}($ formula $=Y \sim x 2$, data $=$ data $)$
Residuals:

Min	$1 Q$	Median	SQ	Max
-2.9448	-0.7886	0.0424	0.6243	3.9408

Coefficients:

Residual standard error: 1.188 on 98 degrees of freedom
Multiple R-squared: 0.1193, Adjusted R-squared: 0.1103
F-statistic: 13.27 on 1 and 98 DF, p-value: 0.0004333

Use the above R output to answer the following questions.
(a) For the model with all three predictors, give the value of each entry in the ANOVA table:

Source	Df	SS	MS	F value	p-value
Regression	i.	ii.	iii.	iv.	v.
Error	vi.	vii.	viii.		
Total	ix.	x.			

Since you may not use a calculator, give expressions that could be evaluated in order to obtain the right numbers!
i. $3=d f_{s s}$
ii. $(4.684)^{-}(1.194)^{2}+3=S S_{\text {Reg }}$
or $(1.194)^{2}+96 \cdot\left(\frac{0.1277}{1-0.1297}\right)=S S_{R_{y}}$
$M S_{\text {Ry }}=\frac{S S_{\text {Ry }}}{P}$
$\Leftrightarrow S S_{\text {Ry }}=\mu S_{\text {Pay }}+P$
iii. $(4.684))^{2}(1.194)^{2}=\mu S_{\text {Peg }}$
iv. $4.684=$ Fstat
v. $0.00426=p-0 . l$
vi. $96=d f_{\text {Error }}$
vii. $(1.194)^{2} * 96=S S_{E \text { orr }}$
viii. $(1.194)^{2}=M S_{E_{\text {rIos }}}$
ix. $99=d f_{70 t}$
x. $(4.684) *(1.194)^{2} \cdot 3 / 0.1193$

$$
F_{\text {st }}=\frac{\mu S_{R_{y}}}{M S_{E r r a}} \Leftrightarrow M S_{R_{y}}=F_{\text {stat }} \cdot \mu S_{E_{\text {roup }}}
$$

(b) Which two predictor variables will have the highest variance inflation factors? How can you tell?

The varildes x_{1} and x_{3}, since they each have high correlatives with the other predictors.
(c) For the model with all three predictors, give the null and alternate hypotheses for the overall F-test of significance.

$$
H_{0}: \beta_{1}=0, \beta_{2}=0, \beta_{3}=0 \text { us } H_{1}: \text { lear }_{j=1,2,3} \text { are } \beta_{j} \neq 0 \text {, }
$$

(d) Suppose we wish to test simultaneously the significance of xi and x2. Write down the relevant null and alternate hypotheses.

$$
\begin{array}{r}
H_{0}: \beta_{1}=0, \beta_{2}=0 \quad H_{1}: \beta_{1} \text { and } \beta_{2} \text { are not } \\
\text { both } 0 .
\end{array}
$$

(e) Give the value of s needed to compute the test statistic

$$
F_{\text {stat }}=\frac{\left(\mathrm{SS}_{\text {Error }}(\text { Reduced })-\mathrm{SS}_{\text {Error }}(\text { Full })\right) / s}{\mathrm{SS}_{\text {Error }}(\text { Full }) /(n-(p+1))}
$$

of the full-reduced model F-test.
Sim the null hypothesis ants 2 slope coefficient gal to 0 ,
the use $s=2$.
(f) The value of the test statistic $F_{\text {stat }}$ for the full-reduced model F-test is 0.464 . Moreover, $F_{2,96,0.05}=3.091$. What do we conclude about the significance of x 1 and x 2 ?

Sin n

$$
F_{\text {stat }}<F_{3,56,0.05} \text {, we fill } \& \text { rout H. }
$$

S. it is raft to regard x_{1} ad x_{2} os having no
important contribution to the value of Y.
3. Inference on the mean of a Normal distribution

Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Normal}\left(\mu, \sigma^{2}\right)$ and suppose we wish to test $H_{0}: \mu=1$ versus $H_{1}: \mu \neq 1$. Let

$$
T_{\text {stat }}=\frac{\bar{X}_{n}-1}{S_{n} / \sqrt{n}}
$$

and suppose we reject H_{0} when $\left|T_{\text {stat }}\right|>t_{n-1, \alpha / 2}$ for some significance level α. Answer the following questions about the probability $P\left(\left|T_{\text {stat }}\right|>t_{n-1, \alpha / 2}\right)$, which is the probability of rejecting H_{0}, also called the power of the test.
(a) Suppose μ is truly equal to 1 . Then give $P\left(\left|T_{\text {stat }}\right|>t_{n-1, \alpha / 2}\right)$

This is equal to α.
(b) What happens to $P\left(\left|T_{\text {stat }}\right|>t_{n-1, \alpha / 2}\right)$ as μ moves away from 1?

It increases from α, limiting to 1 as μ mores further from 1 in either direction.
(c) Suppose μ is not equal to 1 . What happens to $P\left(\left|T_{\text {stat }}\right|>t_{n-1, \alpha / 2}\right)$ if the sample size is increased?

It increases.
(d) Suppose μ is not equal to 1 . What is the effect on $P\left(\left|T_{\text {stat }}\right|>t_{n-1, \alpha / 2}\right)$ of a larger variance σ^{2} ?

Lager variance will decreases tho power when $\mu \neq 1$.
(d) Suppose μ is truly equal to 1 . What is the effect on $P\left(\left|T_{\text {stat }}\right|>t_{n-1, \alpha / 2}\right)$ of a larger sample size n ?

It will hove no effect, sims the critical value tn-1,d/2 is colibreted based on the sample size and α ssh that for any sample size n, the Type I corr rate is exactly α.

