

STAT 516 sp 2024 exam 02

75 minutes, no calculators or notes allowed

1. Multiple linear regression

Consider fitting on a data set the multiple linear regression model $Y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \varepsilon_i$, for $i = 1, \dots, n$, where the ε_i are independent Normal $(0, \sigma^2)$ error terms and the x_{ij} are predictor values.

Suppose the data set has p = 15 predictors, but you do not believe all of them are important, so you decide to search for a good model which does not use all 15 predictors.

- (a) Suppose you wish to compare all possible models that one can build from the 15 predictors. How many models will you need to fit?
 - (b) Instead of considering all possible models, you decide to start with the model which uses all the predictors and then to remove one predictor at a time according to some criterion. What is the name for such an approach to model selection?

backword stepwise selection

2° models

(c) Give the name of a criterion for comparing models and explain how to use it.

AIC. It is used to estimate how well a matter fits the data, while punishing it for having too many parameters. A laser value is interpreted as better

(d) Explain *why* one would wish to discard some of the 15 predictors. Why not just leave all of 15 of them in the model?

Recause having too many predictors results in a high charce of multivollinearity and variance inflations factor in the malel. The result is that it becomes hard to discern the effects of each Feature on the off Firal prediction.

2. One-way ANOVA

A study recorded the tensile strengths of sheet metal specimens sampled from four suppliers. A manufacturer wishes to know whether the mean tensile strength differs across these suppliers.

To answer the manufacturer's question, you fit the model

$$Y_{ij} = \mu + \tau_i + \varepsilon_{ij}, \quad i = 1, \dots, a, \quad j = 1, \dots, n,$$

where the ε_{ij} are independent Normal $(0, \sigma^2)$ random variables.

Here is some R output:

supp

lm_out <- lm(y ~ supp, data = tensile)
lm_out</pre>

Call:

lm(formula = y ~ supp, data = tensile)

Coefficients:

(Intercept)	supp2	supp3	supp4
22.00	45.50	11.25	53.00

summary(lm_out)
anova(lm_out)
plot(lm_out, which = 1)

Fitted values Im(y ~ supp)

```
plot(lm_out, which = 2)
```


(b) Give each of the treatment group means \bar{Y}_{i} for i = 1, 2, 3, 4 using the estimated model coefficients (you do not need a calculator to do this).

$$\begin{array}{c} \bar{y}_{i1} = 22.00 & (22+0) \\ \bar{y}_{i2} = 67.50 & (22+45.5) \\ \bar{y}_{i3} = 33.25 & (22+(15.25)) \end{array}$$

(c) Each value listed below appears in the ANOVA table for these data.

15 7978.2 19.044 139.65 12 1675.7 7,401 \times 10⁻⁵ 2659.40 3 9653.9

Put each value in the right place (you do not need a calculator to do this):

Source	Df	SS	MS	F value	p-value
Supplier	3	7978.2	2659.4	19.044	7.401 × 10-5
Error	12	1675.7	139.65		
Total	15	9653.9			

(d) State whether you think the model assumptions are satisfied by these data. Write a couple of sentences. If you do not think the assumptions are satisfied, give some advice about what to do. I think the assumptions look okay. The RQ plot looks good outside of mostly the first point, although the last point also falls below the line. The residuals vs fitted plot could be passable but its not great.

(e) Write down the null hypotheses for which the F value in the ANOVA table serves as a test statistic. ALSO state whether you reject the null hypothesis with these data.

Ho: All Mi are the same

we would reject the null be we have a p-value that is close to zero

4

(f) Assuming the assumptions are satisfied, write (three or four sentences) an interpretation of the output of the plot below. What can you tell the manufacturer about the differences in mean tensile strength between the four manufacturers? Does a ranking of the suppliers emerge? Can you relate this picture to the boxplots shown earlier in this question? Address such questions in your answer.

Tukey_out <- TukeyHSD(aov(y-supp,data=tensile))
plot(Tukey_out,cex = .5)</pre>

95% family-wise confidence level

Differences in mean levels of supp

Based on the plot, it is determined that I can fail to reject 3-1 and 4-2 and I reject 4-3,3-2,4+1, and 2-1. There is significant difference between means 4-3,3-2,4+1, and 2-1 and there is not significant difference 4-2 and 3-1. Based on the boxplots, there is more similarity between products (1 and 3) and (4 and 2). There is a ranking of suppliers in the sense that supp 2 and 4 have higher strength than supp 1 and 3.

3. Two-way factorial design

Fifty-four rats were randomly assigned to receive one of nine diets such that six rats were assigned to each diet. All combinations of three grain types (sorghum, high-lysine sorghum, millet) and three preparations (whole; decorticated; decorticated, boiled, and soaked) comprised the nine diets. The response for each rat is a biological measurement taken after the rat was fed the diet for some amount of time.

head(diet,n=12)

	grain	prep	bioval
1	sorgh	whole	40.61
2	sorgh	whole	56.78
3	sorgh	whole	69.05
4	sorgh	whole	39.90
5	sorgh	whole	55.06
6	sorgh	whole	32.43
7	sorgh	decort	74.68
8	sorgh	decort	56.33
9	sorgh	decort	71.02
10	sorgh	decort	53.35
11	sorgh	decort	41.43
12	sorgh	decort	33.00

boxplot(bioval ~ grain + prep, data = diet)

grain : prep

boxplot(bioval ~ prep, data = diet)

prep

```
boxplot(bioval ~ grain, data = diet)
```


Consider modeling the data with the two-way treatment effects model

 $Y_{ijk} + \mu + \tau_i + \gamma_j + (\tau\gamma)_{ij} + \varepsilon_{ijk}, \quad i = 1, \dots, a, \quad j = 1, \dots, b, \quad k = 1, \dots, n_{ij},$ where the ε_{ijk} are independent Normal $(0, \sigma^2)$ random variables.

(a) Let the grain type be factor A and the preparation type be factor B. Give a and b as well as n_{ij} for all i, j.

Q=3	$n_{ij} = n = v$	vof o	all	1=1,,0	,
0.5	(baranced)			j=1,, ni	

(b) Use the estimated coefficients (printed below) from the two-way treatment effects model to write an expression giving the mean of the responses in the group of rats fed the diet at the factor level combination sorghum \times whole (you do not have to evaluate your expression).

Jijk = 55.397 + 12.997 - 8.982 - 10.440

Im_out <- lm(bioval ~ grain + prep + grain:prep, data = diet)

Call: lm(formula = bioval ~ grain + prep + grain:prep, data = diet)

Coefficients:

grainsorgh	grainmillet	(Intercept)
12.997	2.145	55.397
ainmillet:prepdecort	prepwhole	prepdecort
-15.833	-8.982	-1.102
grainsorgh:prepwhole	grainmillet:prepwhole	grainsorgh:prepdecort
-10.440	1.127	-12.323

(c) Fill in the missing Df values in the ANOVA table below.

					100 million (100 million)	
	Source	Df	SS	MS	F value	p value
9-1 b-1 (9-1)(10-1) N-01b N-1	A B AB Error Total	2 2 4 45 53	$\begin{array}{c} \mathrm{SS}_{\mathrm{A}} \\ \mathrm{SS}_{\mathrm{B}} \\ \mathrm{SS}_{\mathrm{AB}} \\ \mathrm{SS}_{\mathrm{Error}} \\ \mathrm{SS}_{\mathrm{Tot}} \end{array}$	MS _A MS _B MS _{AB} 105.89	2.9334 7.3265 1.8531	0.06346 0.00176 0.13533
54-13, 54-9	(3)		/			

(d) In light of the results in the ANOVA table give a careful interpretation of the plot below (more than one sentence).

(g) Explain in detail what the following code is doing. Give also a careful interpretation of the printed output. Write a few sentences.

lower upper decort - whole -6.256030 9.453808 bsb - whole 4.231192 19.941030

This code is showing punnet's method of comparing means as it compares the means of bsb i decort to a baseline (mean of whole), resulting in a-1 confidence intervals. bsb-whole does not contain 0 so this tells us these means are different, whereas decort-whole does contain 0 meaning these means could be the same.

10

4. Cell-means model for the two-way factorial design

Let $Y_{ijk} = \mu_{ij} + \varepsilon_{ijk}$, $i = 1, 2, j = 1, 2, 3, k = 1, ..., n_{ij}$, where the ε_{ijk} are independent Normal $(0, \sigma^2)$ random variables. Let *i* index the levels of one factor and *j* index the levels of another factor in a two-way factorial experiment. Moreover, suppose the cell means are

$$\mu_{11} = 18, \quad \mu_{12} = 20, \quad \mu_{13} = 21, \quad \mu_{21} = 14, \quad \mu_{22} = 16, \quad \mu_{23} = 17.$$

(a) Compute the marginal means $\bar{\mu}_{i.}$ for i = 1, 2 and $\bar{\mu}_{.j}$ for j = 1, 2, 3. $\mathcal{M}_{1.0} = \frac{\mathcal{M}_{11} + \mathcal{M}_{12} + \mathcal{M}_{13}}{3} = \frac{18 + 20 + 21}{3} = \frac{59}{3} = \frac{20}{3}$ $\mathcal{M}_{2.0} = \frac{\mathcal{M}_{2.0} + \mathcal{M}_{2.2} + \mathcal{M}_{2.3}}{3} = \frac{14 + 16 + 17}{3} = \frac{47}{3} = \frac{14}{2} = 19$ $\mathcal{M}_{0.1} = \frac{\mathcal{M}_{11} + \mathcal{M}_{21}}{2} = \frac{18 + 14}{2} = 16$ $\mathcal{M}_{0.2} = \frac{\mathcal{M}_{12} + \mathcal{M}_{22}}{2} = \frac{20 + 16}{2} = 18$

(b) Is there interaction between the two factors? Explain your answer.

20

18

16

(c) Carefully draw an interaction plot with the level j = 1, 2, 3 along the horizontal axis.

2 3

11