STAT 712 fa 2021 Lec 1 slides

Set theory and basics of probability theory

These slides are an instructional aid; their sole purpose is to display, during the lecture, definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.
(1) Basics of sets

(2) Basics of probability theory

(3) Limits of sequences of sets and continuity of probability function

Experiment

An experiment is a process which generates an outcome such that there is
(i) more than one possible outcome
(ii) the set of possible outcomes is known
(iii) the outcome is not known in advance

Sample space \downarrow Omega
 The sample space Ω of an experiment is the set of possible outcomes.

Call each"point " $\omega \in \Omega$ a sample point.
The symbol \in denotes membership; $\omega \in \Omega$ means ω belongs to/is a member of Ω.

Exercise: Give the sample space Ω for the following experiments:
(1) Roll of a 6 -sided die. $\Omega=\{1,2,3,4,5,6\}$
(2) Number of bacteria counted in sample.

$$
\Omega=\{0,1,2, \ldots,\}
$$

(3) Blood type of a randomly selected student. $\Omega=\{A+, A-, B+\ldots$,
(4) Time until you drop your new phone and crack the screen. $\Omega=[0, \infty)$ in inicionith
(5) Proportion of people in a sample of with antibodies to a virus. $\Omega=\left\{\frac{n}{n}, \frac{1}{n}, \ldots, \frac{n}{n}\right\}$
((Deviation of today's temperature from the historical average. finite

$$
\Omega=\mathbb{R}
$$

infinite, uncountable

Finite/infinite and countable/uncountable sets

- The cardinality of a set is the number of elements in the set.
- A set is finite if its cardinality is some positive integer.
- The empty set \emptyset, the set containing no elements, is finite with cardinality 0 .
- Sets that do not have finite cardinality are infinite sets.
- A set is countable if it has the same cardinality as some subset of the positive integers.
- Sets that are not countable are called uncountable.

If a set is countable, we can list (or begin to list) its elements.

Event

An event is a collection of possible outcomes of an experiment, that is any subset of Ω (including Ω itself).

- Usually represent events with capital letters A, B, C, \ldots
- Say an event A occurs if the outcome is in the set A.
- So events are equivalent to sets. Can refer to events as sets, to sets as events.

Example: Rolling a die has sample space $\Omega=\{\Theta, \odot, \odot, \because, \because, \because \in\}$.

- $A=(\cdot),(3)$ is the event "you roll an odd number".
- $B=\left\{\left[\theta^{2}\right\}\right.$ is the event "you roll a 6 ".

Let A and B be events/sets in a sample space Ω.

Relationships between sets

- Containment: $A \subset B$ if $\omega \in A \Rightarrow \omega \in B$
- Equality: $A=B$ if $A \subset B$ and $B C A$. [Mutual contrinumat]

The symbol \subset means "is a subset of". Note the difference between \subset and \in.

Elementary set operations Let A and B be subsets of Ω.

Exercise: Write each of the above as a set $\{\omega \in \Omega: \ldots\}$.
Unions and intersections of infinite collections of sets
For a collection of sets $A_{1}, A_{2}, \cdots \subset \Omega$ we define

$$
\begin{aligned}
& \bigcup_{n=1}^{\infty} A_{n}=\left\{\omega \in \Omega: \omega \text { is in at learn one \& } A_{1}, A_{2}, \ldots\right\} \\
& =\left\{\omega \in \Omega: \exists k \geqslant 1 \text { such that } \omega \in A_{k}\right\} \\
& \bigcap_{n=1}^{\infty} A_{n}=\left\{\omega \in \Omega: \omega \in \int_{\text {"the exists" }}^{\infty} A_{n} \text { for , I1 } n \geq 1\right\}
\end{aligned}
$$

$$
\begin{aligned}
& A, B \subset \Omega \quad \text { "solent" } \\
& A \cup B=\{\omega \in \Omega: \omega \in A \text { or } \omega \in B \text { (or with } A \cdots B B\} \\
& A \cap B=\{\omega \in \Omega: \omega \in A \text { and } \omega \in B\} \\
& A^{c}=\{\omega \in \Omega: \omega \notin A\} \\
& B \mid A=\{\omega \in \Omega: \omega \in B \text { and } \omega \notin A\} .
\end{aligned}
$$

$$
\begin{aligned}
(1+2)+3 & =1+(2+3) \\
2+3 & =3+2 \\
2(1+3) & =2 \cdot 1+2 \cdot 3
\end{aligned}
$$

Theorem (Properties of the union and intersection operations)
For any events $A, B, C \subset \Omega$, we have

- Commutativity:

$$
\begin{aligned}
& A \cup B=B \cup A \\
& A \cap B=B \cap A
\end{aligned}
$$

- Associativity:

$$
A \cup(B \cup C)=(A \cup B) \cup C
$$

$$
A \cap(B \cap C)=(A \cap B) \cap C
$$

- Distributive laws:

$$
\begin{aligned}
& A \cup(B \cap C)=(A \cup B) \cap(A \cup C) \\
& A \cap(B \cup C)=(A \cap B) \cup(A \cap C)
\end{aligned}
$$

- De Morgan's Laws:

$$
(A \cup B)^{c}=A^{c} \cap B^{c}, \quad(A \cap B)^{c}=A^{c} \cup B^{c}
$$

Exercise: Give proof of De Morgan's laws. In addition, verify the identities:

Proof of $\quad(A \cup B)^{c}=A^{c} \cap B^{c}: \quad>$
(i) show $(A \cup B)^{c} \subset A^{c} \cap B^{c}$:

$$
\begin{aligned}
\omega \in(A \cup B)^{c} & \Rightarrow \omega \notin(A \cup B) \\
& \Rightarrow \omega \notin A \text { and } \omega \notin B \\
& \Rightarrow \omega \in A^{c} \text { and } \omega \in B^{c} \\
& \Rightarrow \omega \in A^{c} \cap B^{c}
\end{aligned}
$$

(ii) show $A^{c} \cap B^{c} \subset(A \cup B)^{c}$:

$$
\begin{aligned}
\omega \in A^{c} \cap B^{c} & \Rightarrow \omega \in A^{c} \text { and } \omega \in B^{c} \\
& \Rightarrow \omega \notin A \quad a l \quad \omega \notin B \\
& \Rightarrow \omega \notin(A \cup B) \\
& \Rightarrow \omega \in(A \cup B)^{c} . \quad \int
\end{aligned}
$$

So $\quad(A \cup B)^{c}=A^{c} \cap B^{c}$.
Prop of $A=(A \cap B) \cup\left(A \cap B^{C}\right)$
Show $A \subset(A \cap B) \cup(A \cap B C)$

$$
\omega \in A \quad \Rightarrow \quad \omega \in A \text { and } \omega \in \Omega
$$

$$
\begin{aligned}
& \Rightarrow \omega \in A \quad \cdots \quad \omega \in B \text { or } \omega \in B^{-} \\
& \Rightarrow \omega \in(A \cap B) \text { or } \omega \in\left(A \cap B^{C}\right) \\
& \Rightarrow \omega \in(A \cup B) \cup\left(A \cap B^{c}\right)
\end{aligned}
$$

Show $(A \cap B) \cup\left(A \cap B^{\circ}\right) \subset A$:

$$
\begin{aligned}
\omega \in(A \cap B) \cup(A \cap B) & \Rightarrow \omega \in(A \cap B) \text { or } \omega \in\left(A \cap B^{C}\right) \\
& \Rightarrow \omega \in A .
\end{aligned}
$$

so $\quad A=(A \cap B) \cup\left(A \cap B^{\circ}\right)$

Mutual exclusivity/disjoint-ness, partition

- Two events A and B are called mutually exclusive or disjoint if $A \cap B=\emptyset$.
- The events A_{1}, A_{2}, \ldots are called mutually exclusive or pairwise disjoint if $A_{i} \cap A_{j}=\emptyset$ for all $i \neq j$.
- If $A_{1}, A_{2}, \cdots \subset \Omega$ are pairwise disjoint and $\bigcup_{n=1}^{\infty} A_{n}=\Omega$, then the collection of sets A_{1}, A_{2}, \ldots is called a partition of Ω.

Think of:

(1) Partitions of sample space for the time until you drop your phone.
(2) Partitions of sample space when drawing one card from a 52-card deck.
(3) Partitions of the set $[0,1)$.
(2) $\Omega=[0, \infty) \quad A_{1}=[0,10)$ and $A_{2}=[10, \infty)$ form puntion.

Or $B_{1}=[0,1), B_{2}=[1,2), B_{n}=[n-1, n), n \geqslant 1$.

$$
\bigcup_{n=1}^{\infty} B_{n}=[0, \infty)=\Omega
$$

(2) $\Omega=\{$ The 52 cands\}

$$
A_{1}=\left\{0_{3}\right\} \quad A_{2}=\left\{\nabla_{3}\right\} \quad A_{3}=\left\{q_{3}\right\} \quad A_{7}=\left\{Q_{5}\right\}
$$

(3)

$$
\begin{aligned}
& \Omega=[0,1) \\
& A_{1}=\left[0, \frac{1}{2}\right) \quad A_{2}=\left[\frac{1}{2}, \frac{3}{4}\right) \quad A_{1}=\left[\frac{2}{n}, \frac{7}{8}\right), \ldots \\
& A_{n}=\left[1-\left(\frac{1}{2}\right)^{n-1}, 1-\left(\frac{1}{2}\right)^{n}\right), n \geqslant 1 \\
& \quad \bigcup_{n=1}^{\infty} A_{n}=[0,1)=\Omega .
\end{aligned}
$$

(1) Basics of sets
(2) Basics of probability theory

(3) Limits of sequences of sets and continuity of probability function

We want to be able to assign probabilities to events. To which events?
σ-algebra $\overbrace{\text { "events" We wont to be able to coign probelicitios }}^{\text {to }}$
Let \mathcal{B} be a collection of subsets of Ω. We call \mathcal{B} a σ-algebra on Ω if it has the three properties:
(1) $\emptyset \in \mathcal{B}$.
(2) If $A \in \mathcal{B}$ then $\underline{A}^{c} \in \mathcal{B}$.
(3) If $A_{1}, A_{2}, \cdots \in \mathcal{B}$ then $\cup_{i=1}^{\infty} A_{i} \in \mathcal{B}$.

Exercise: Determine which of the following are σ-algebras of $\Omega=\{a, b, c, d\}$:

- $\mathcal{B}_{1}=\{\emptyset,\{a, b, c, d\}\}$ "trivia" σ-algebra
- $\mathcal{B}_{2}=\{\{a\},\{b, c, d\}, \emptyset,\{a, b, c, d\}\}$
- $\mathcal{B}_{3}=\{\{a, b\},\{a, b, c\},\{d\}, \emptyset,\{a, b, c, d\}\} \boldsymbol{X} \boldsymbol{N}^{+}$
- $\mathcal{B}_{4}=\{$ all subsets of Ω, including Ω itself $\}$

Exercise: Consider the sample space

$$
\Omega=[0,1]
$$

Add only the subsets required to make these collections into σ-algebras on Ω :
$\begin{array}{ll}\text { (1) } & \mathcal{B}_{1}=\{\emptyset,\{1\},[0,1 / 2), \ldots \\ \text { (c) } & \mathcal{B}_{2}=\{[0,1 / 2),[1 / 2,3 / 4), \not \subset,\} .\end{array}$

Theorem (Derived properties of σ-algebras)
Let \mathcal{B} be a σ-algebra on a sample space Ω.
(1) - $\Omega \in \mathcal{B}$.
(2)- If $A_{1}, \ldots, A_{n} \in \mathcal{B}$ then $\cup_{i=1}^{n} A_{i} \in \mathcal{B}$. "closure under finite unions"
(3) - If $A_{1}, \ldots, A_{n} \in \mathcal{B}$ then $\Upsilon_{i=1}^{n} A_{i} \in \mathcal{B}$. "dour vader finite intercectinas"

- If $A_{1}, A_{2}, \cdots \in \mathcal{B}$ then $\cap_{n=1}^{\infty} A_{n} \in \mathcal{B}$.
- If $A, B \in \mathcal{B}$ then $A \backslash B \in \mathcal{B}$.

On your own.

Exercise: Prove each of the above.
(1) (i) jives $\phi \in Q$, (ii) $\phi^{6} \in Q$. And $\phi^{c}=\Omega$, s. $\Omega \in B$.
(2) For amy $A_{1}, \ldots, A_{n} \in B$, me cen deific $A_{n+1}=\phi, A_{n+2}=\phi, \ldots \in B$ The $\bigcup_{n=1}^{\infty} A_{n} \in B$. $A_{n} d \bigcup_{n=1}^{\infty} A_{n}=\bigcup_{i=1}^{n} A_{i}$ s. $\bigcup_{i=1}^{n} A_{i} \in B$.
(3)

$$
\begin{aligned}
& A_{1}^{c}, \ldots, A_{n}^{c} \in B \stackrel{2}{\Rightarrow} \bigcup_{i=1}^{\infty} A_{i}^{c} \in B \quad \text { [cosonfminter uniouch] } \\
& \left(\bigcup_{i=1} A_{i}^{2}\right)^{c} \in B \text { bean of (ii) } \\
& \text { And }\left(\bigcup_{i=1}^{n} A_{i}^{i}\right)^{c}=\bigcap_{i=1}^{n} A_{i} \quad\left(D_{2} \mu_{\text {orgoin }}\right)
\end{aligned}
$$

b. $\hat{n}_{i=1}^{n} A_{i} \in B$.

Exercise: We sometimes restrict our attention to a subset of the sample space. Let \mathcal{B} be a σ-algebra on a sample space Ω and let $C \in \mathcal{B}$. Show that the collection of sets $\mathcal{B}_{C}=\{\underline{C} \cap A: A \in \mathcal{B}\}$ is a σ-algebra on C.
(i) $\phi \stackrel{?}{\in} B_{c}$

$$
\phi=c \cap \phi, \phi \in O, \text { so yes }
$$

(ii) Closure under couplomentation?

$$
D \in B_{C} \Rightarrow \quad C D \in B_{c} \quad \text { ? } y \text {, }
$$

$$
\begin{aligned}
C \backslash D & =C(C \cap A) \\
& =C \cap(L \cap A) \\
& =\left(\cap\left(C^{C} \cup A^{*}\right)\right. \\
& =\left(C \cap C^{\circ}\right) \cup\left(\angle \cap A^{\circ}\right) \\
& =\varnothing \cup\left(C \cap A^{C}\right) \\
& \left.=C \cap A^{C}\right) \\
& \in B_{C}
\end{aligned}
$$

(iii) at $D_{1}, D_{2}, \ldots \in D_{c}$.

$$
\begin{aligned}
& \bigcup_{i=1}^{\infty} D_{i}=\bigcup_{i=1}^{\infty}\left(c \cap A_{i}\right)=c n \underbrace{\bigcup_{i=1}^{\infty} A_{i}}_{\substack{\in B}}) \in B_{c} . \\
& D_{i}=c \cap A_{i}, \quad A_{i} \in G .
\end{aligned}
$$

Borel σ-algebra on \mathbb{R}

- For $\Omega=(-\infty, \infty)$, we often consider the σ-algebra consisting of all countable unions and intersections of open intervals $(a, b),-\infty<a<b<\infty$.
- We call this the Borel σ-algebra on \mathbb{R} and denote it by $\mathcal{B}(\mathbb{R})$.
- $\mathcal{B}(\mathbb{R})$ contains all sets of the form

$$
[a, b], \quad[a, b), \quad(a, b], \quad(a, b), \quad-\infty \leq a<b \leq \infty
$$

and any countable unions and intersections of such sets.

You will become better acquainted with $\mathcal{B}(\mathbb{R})$ in STAT 810 and STAT 811.

Probability function (Колмогоров ахіоms)

Given a sample space Ω and a σ-algebra \mathcal{B} on Ω, a probability function is a function P with domain \mathcal{B} that satisfies
(1) $P(A) \geq 0$ for all $A \in \mathcal{B}$.
(2) $P(\Omega)=1$.

- If $A_{1}, A_{2}, \cdots \in \mathcal{B}$ are pairwise disjoint, then $P\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} P\left(A_{i}\right)$.
"Countable additivity"

These three properties are known as the Колмогоров axioms.

Probability space

We often introduce a sample space Ω, a σ-algebra \mathcal{B} on Ω, and a probability function P on \mathcal{B} together as a probability space, which we write as (Ω, \mathcal{B}, P).

School of deFinetti rejects the axiom of countable additivity. Instead asserts:
Axiom of finite additivity [Weaker, becaico it it in placed, by For $n \geq 1$, if $A_{1}, \ldots, A_{n} \in \mathcal{B}$ are pairwise disjoint, then $P\left(\cup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} P\left(A_{i}\right)$.
Simplified: If $A \in \mathcal{B}$ and $B \in \mathcal{B}$ are disjoint, then $P(A \cup B)=P(A)+P(B)$.

Exercise: Show that the axiom of countable additivity implies finite additivity.

$$
\text { Fir }->\quad A_{1, \ldots}, A_{n} \in Q \quad A_{i} \cap A_{i}=\varnothing \quad i=j
$$

set $A_{A+1}=\phi, A_{n+2}=\phi, \ldots$
Then $\bigcup_{n=1}^{\infty} A_{n}=\bigcup_{i=1}^{n} A_{i}$.

$$
\begin{aligned}
& P\left(\sum_{i=1}^{n} A_{i}\right)=P\left(\sum_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} P\left(A_{n}\right)=\sum_{[i=1}^{n} P\left(A_{i}\right) \\
& {[P(\phi)=0]} \\
& P(A, B, A \cap B=\varnothing \\
& P(A \cup B)=P(A)+P(B)
\end{aligned}
$$

Theorem (Probability function for a finite sample space)

Let $\Omega=\left\{\omega_{1}, \ldots, \omega_{n} \eta\right.$ be a finite sample space and let \mathcal{B} be any σ-algebra on Ω. In addition, let $p_{1}, \ldots, p_{n} \geq 0$ such that $\sum_{j=1}^{n} p_{j}=1$. Then the function given by

$$
P(A)=\sum_{\left\{i: w_{i} \in \mathcal{A}\right\}} P_{i} \text { for any } A \in \mathcal{B}
$$

is a probability function on \mathcal{B} (satisfies the Колмогоров axioms).

The above remains true if Ω is a countable set.
Exercise: Prove the theorem

$$
\begin{aligned}
& \text { (i) } p(A) \geqslant 0 \\
& \text { (ii) } p(\Omega)=1
\end{aligned}
$$

(iii) Lut $A_{1}, \ldots, A_{n} \in D, A_{i} \cap A_{j}=\psi$, ifj.

Nad to shau $P\left(\bigcup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} P\left(A_{i}\right)$.

$$
\left.\begin{array}{rl}
P\left(\bigcup_{i=1}\right) & =\sum_{\{j: \omega_{j} \in \underbrace{p_{j}}_{i=1} A_{i}} \\
& =\sum_{i=1}^{n} \sum_{i j}^{\left\{j: \omega_{j} \in A_{i}\right\}}
\end{array}\right)
$$

Exercise: Consider rolling two dice.
(1) Write down the points in the sample space.
(2) What probabilities p_{j} should be assigned to the sample points?
(3) Compute the probabilities of the following events:

- You roll doubles.
- The sum of the rolls is equal to 7 .
- The sum of the rolls is greater than 10 .
- The absolute value of the difference between the rolls is less than 2.

Sample space for rolling two dice, tabulated as (roll 1, roll 2):

$$
\begin{aligned}
& \Omega=\left\{\begin{array}{cccccc}
\omega_{\mathbf{1}} & \omega_{\mathbf{2}} & \omega_{\mathbf{3}} & & \\
(1,4 & (1,2) & (1,3) & (1,4) & (1,5) & (1,6) \\
(2,1) & (2,2) & (2,3) & (2,4) & (2,5) & (2,6) \\
(3,1) & (3,2) & (3,3) & (3,4) & (3,5) & (3,6) \\
(4,1) & (4,2) & (4,3) & (4,4) & (4,5) & (4,6) \\
(5,1) & (5,2) & (5,3) & (5,4) & (55) & (5,6) \\
(6,1) & (6,2) & (6,3) & (6,4) & (6,5) & (6,6)
\end{array}\right\} . \\
& { }_{\omega 0}{ }^{5} \\
& p_{1}=\ldots=p_{36}=\frac{1}{36} \\
& A=\{\text { gl doh }\}=\{(t, 1),(0,2\}, \ldots(6,6)\} \\
& P(A)=\sum_{\{: 0,0 \in A\}}=6 \cdot \frac{1}{36}=\frac{1}{6} \text {. }
\end{aligned}
$$

Exercise: Let \mathcal{B} be a σ-algebra on a sample space Ω and let P_{1} and P_{2} be probability functions on \mathcal{B}. Show that the function given by

$$
P(A)=\underbrace{\alpha}_{\geqslant 0} P_{1}(A)+(\underbrace{1-\alpha}_{\geqslant 0}) \underbrace{P_{2}(A)}_{\geqslant 0} \text { for all } A \in \mathcal{B},
$$

where $\alpha \in[0,1]$, is a probability function on \mathcal{B} (satisfies the K. axioms).
(i) $P(A) \geqslant 0$
(ii) $p(\Omega)=1$.

$$
\begin{aligned}
p(\Omega) & =\alpha \underbrace{P_{1}(\Omega)}_{=2}+(1-\alpha) \underbrace{P_{2}(\Omega)}_{=1} \\
& =\alpha+1-\alpha=1
\end{aligned}
$$

$$
\text { (iii) } \begin{aligned}
& A_{1}, A_{2}, \ldots \in Q \quad A_{i} \cap A_{j}=\varnothing \quad i \neq j \\
& P\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\alpha \underbrace{P_{1}\left(\sum_{i=1}^{\infty} A_{i}\right)}_{i=\alpha}+(1-\alpha) \underbrace{P_{2}\left(\sum_{i=1}^{\infty} A_{i}\right)} \\
&=\alpha \sum_{i=1}^{\infty} P_{1}\left(A_{i}\right)+(1-\alpha) \sum_{i=1}^{\infty} P_{2}\left(A_{i}\right) \\
&=\sum_{i=}^{\infty} \underbrace{\alpha} \underbrace{}_{1} P_{1}\left(A_{i}\right)+(-\alpha) P_{2}\left(A_{i}\right)] \\
&=\sum_{i=n}^{\infty} P\left(A_{i}\right) \quad
\end{aligned}
$$

Exercise: Let $\Omega=\sqrt{(0,1)}$ and $\{\Omega \cap B: B \in \mathcal{B}(\mathbb{R})\}$ be the Bore σ-algebra on Ω. Show that the function given by

$$
P(A)=\int_{A} 2 x d x \quad \text { for all } A \in \mathcal{B}
$$

is a probability function on \mathcal{B} (satisfies the K . axioms).

$$
\begin{aligned}
& \text { (i) } \left.P(A)=\int_{A} \begin{array}{l}
2 x) d x \\
A<c \\
A
\end{array}\right) \\
& \text { (ii) } P(\Omega)=0 \int_{(0,1)} 2 x d x=\int_{0}^{1} 2 x d x=\left.2 \frac{x^{2}}{2}\right|_{0} ^{1}=1 .
\end{aligned}
$$

(iii) $A_{1}, A_{2}, \ldots \in B \quad A_{i} \cap A_{j}=\varnothing \quad$ ifj.

$$
\begin{aligned}
P\left(\bigcup_{i=1}^{\infty} A_{i}\right) & =\int_{\bigcup_{i=1}^{\infty}} 2 x d x \\
& =\sum_{i=1}^{\infty} \underbrace{\int_{A_{i}}} 2 x d x \\
& =\sum_{i=1}^{\infty} P\left(A_{i}\right)
\end{aligned}
$$

Theorem (Derived properties of a probability function)
Given a probability space (Ω, \mathcal{B}, P) and a set $A \in \mathcal{B}$, we have
(1) $P(\emptyset)=0$
(2) $P(A) \leq 1$
(3) $P\left(A^{c}\right)=1-P(A)$

Exercise: Prove (3), (2), and then (1)

(2)

$$
\begin{aligned}
p(A) & =\underbrace{\underbrace{p\left(A_{0}\right.}_{\left.1 A^{c}\right)}}_{1-0} \Rightarrow p(A) \leq 1 . . . ~
\end{aligned}
$$

(1)

$$
\begin{gathered}
\phi=\Omega^{c}, p(\Omega)=1 . \\
p(\varnothing)=p\left(\Omega^{c}\right)=1-p(\Omega)=1-1=0 .
\end{gathered}
$$

Theorem (First probability results)
Given a probability space (Ω, \mathcal{B}, P) and sets $A, B \in \mathcal{B}$, we have$P\left(B \cap A^{c}\right)=P(B)-P(A \cap B)$.$P(A \cup B)=P(A)+P(B)-P(A \cap B)$.If $A \subset B$, then $P(A) \leq P(B)$.

Exercise: Prove (1), (2), and then (3).
"firth aldioity"
(1) $B=\underbrace{(B \cap A) \cup\left(B \cap A^{C}\right)}_{\text {dis. }}$

(2) $A \cup B=A \overbrace{\left(B \cap A^{C}\right)}^{\text {dirjonat }}$

$$
\begin{aligned}
P(A \cup B) & =P(A)+P\left(B \cap A^{C}\right) \\
& =P(A)+P(B)-P(A \cap B)
\end{aligned}
$$

(3) $A \subset B \Rightarrow A \cup B=B$

$$
\begin{gathered}
P(B)=P(A \cup B)=\frac{P(A)}{3}+P \underbrace{\left.P \cap A^{C}\right)}_{\geqslant 0} \\
\Rightarrow \quad P(A) \leq P(B) .
\end{gathered}
$$

$$
\bigcup_{i=1}^{\infty} c_{i}=\Omega, \quad c_{i} \cap c_{j}=\varnothing \text { icj. }
$$

Theorem (Law of total probability and union bound)
Given a probability space (Ω, \mathcal{B}, P), we have
(1) $P(A)=\sum_{i=1}^{\infty} P\left(A \cap C_{i}\right)$ for any $A \in \mathcal{B}$ and partition $C_{1}, C_{2}, \cdots \in \mathcal{B}$ of Ω.
(c) $P\left(\bigcup_{i=1}^{\infty} A_{i}\right) \leq \sum_{i=1}^{\infty} P\left(A_{i}\right)$ for any sets $A_{1}, A_{2}, \cdots \in \mathcal{B}$
"tale add"
Exercise: Prove (1) and (2) of the theorem.
(1) $A=\bigcup_{i=1}^{\infty} \underbrace{\left(A \cap C_{i}\right)}_{\text {pu dirgont }} \Rightarrow P(A)=P\left(\bigcup_{i=1}^{\infty}\left(A \cap C_{i}\right)\right)=\sum_{i=1}^{n} P\left(A \cap C_{i}\right)$.
(2) Union Band (Boclés inegolity). Writs $\bigcup_{n=1}^{\infty} A_{a}$ is a union of pw dicj. ent. Defim

$$
\begin{aligned}
& B_{1}=A_{1} \quad B_{1} \subset A_{1} \\
& B_{2}=A_{2} \backslash A_{1} \quad B_{2} \subset A_{2} \\
& B_{3}=A_{3} \backslash\left(A_{1} \cup A_{2}\right) \quad B_{3} \subset A_{3}
\end{aligned}
$$

$$
B_{n}^{\prime}=A_{n} \backslash\left(A_{1} \cup \cdots \cup A_{n} \cdot\right)
$$

Then $\bigcup_{n=1}^{\infty} A_{n}=\bigcup_{n=1}^{\infty} B_{n}$,
and $\quad B_{i} \cap B_{j}=\varnothing \quad \forall i \neq j$.

So $\quad P\left(\bigcup_{n=1}^{\infty} A_{n}\right)=P\left(\bigcup_{n=1}^{\infty} B_{n}\right)=\sum_{n=1}^{\infty} P\left(B_{n}\right) \leq \sum_{n=1}^{\infty} P\left(A_{n}\right)$.

$$
B_{n} \subset A_{n} \Rightarrow P\left(B_{n}\right) \leq P\left(A_{n}\right)
$$

Theorem (Inclusion-exclusion principle)
Given a probability space (Ω, \mathcal{B}, P) and any events $A_{1}, \ldots, A_{n} \in \mathcal{B}$, we have

$$
P\left(\cup_{i=1}^{n} A_{i}\right)=S_{1}-S_{2}+S_{3}-\cdots+(-1)^{n-1} S_{n},
$$

where $S_{k}=\sum_{1 \leq i_{1}<\cdots<i_{k} \leq n} P\left(A_{i_{1}} \cap \cdots \cap A_{i_{k}}\right)$ for $k=1, \ldots, n$.

Exercise:

(1) Write out inclusion-exclusion formula for $n=2,3$.
(2) Give heuristics of counting proof.
(1) $n=2 \quad A_{1}, A_{2}$.

$$
\begin{aligned}
P\left(A_{1} \cup A_{2}\right) & =S_{1}-S_{2} \\
S_{1} & =\sum_{1 \leq i_{1} \leq 2} P\left(A_{i_{1}}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)
\end{aligned}
$$

$$
\begin{gathered}
s_{2}=\sum_{1 \leq i_{1}<i_{2} \leq 2} P\left(A_{i_{1}} \cap A_{i_{2}}\right)=P\left(A_{1} \cap A_{2}\right) \\
P\left(A_{1} \cup A_{2}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)-P\left(A_{1} \cap A_{2}\right) .
\end{gathered}
$$

$n=3$

$$
\begin{aligned}
& P\left(A_{1} \cup A_{2} \cup A_{3}\right)=S_{1}-S_{2}+S_{3} \\
& S_{1}=\sum_{1<i_{1}=3} P\left(A_{i_{1}}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+P\left(A_{3}\right) \\
& S_{2}=\sum_{1 \leqslant i_{1}<i_{2} \leqslant 3} P\left(A_{i_{1}} \cap A_{i_{2}}\right)=P\left(A_{1} \cap A_{2}\right)+P\left(A_{1} \cap A_{3}\right) \\
& +\rho\left(A_{2} \cap A_{1}\right) \\
& S_{3}=\sum_{K_{i_{1} \subset i_{2}<i_{3} \leqslant 3}} p\left(A_{i,} \cap A_{i_{2}} \cap A_{i_{3}}\right)=p\left(A_{1} \cap A_{2} \cap A_{2}\right) \\
& P\left(A_{1} \cup A_{2} \cup A_{3}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+P\left(A_{3}\right) \\
& -P\left(A_{1} \cap A_{2}\right)-P\left(A_{2} \cap A_{2}\right)-P\left(A_{1} \cap A_{1}\right) \\
& +P\left(A_{1} \cap A_{2} \cap A_{1}\right) .
\end{aligned}
$$

(2) Aroum $\Omega=\delta \omega_{1}, w_{2}, \ldots$ bith ants p_{1}, p_{2}, \ldots

$$
P\left(\bigcup_{i=1}^{n} A_{i}\right)=S_{1}-S_{2}+S_{3}-\cdots+(-1)^{n \cdot 1} S_{2}
$$

Comicde coutribetion of a aigh outcom w_{j} to
eich side.
$\begin{aligned} & \text { Sprom } \omega_{j} \text { is in } 0 \leq m \leq n \text { of } A_{1}, \ldots \\ & \text { LITs } \quad ? \\ & p_{j} \cdot 1=p_{j} m-p_{j}\binom{m}{2}+p_{j}\binom{m}{3}\end{aligned}$

$$
-\ldots+p_{j}(-1)^{m-1}\binom{m}{m}
$$

$$
\begin{aligned}
& S_{1}=P\left(A_{1}\right)+\ldots+P\left(A_{n}\right) \\
& S_{2}=\sum_{1 \leq i_{1}, i_{2} \leq n} P\left(A_{i, \cap} \cap A_{i 2}\right) \\
& S_{3}=\sum_{1 \sum i_{1}, i_{2}+i_{3} \leq n} P\left(A_{i}, \cap A_{i,} \cap A_{i 3}\right)
\end{aligned}
$$

$$
S_{m}=
$$

$$
\Leftrightarrow
$$

$$
0=\underbrace{0}=-\binom{m}{0}+\binom{m}{1}-\binom{m}{2}+\binom{m}{3}-\ldots+(-1)^{m-1}\binom{m}{m}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Ya, ruily } \\
\text { tom. }
\end{array} \quad(-1)[\underbrace{\left.\sum_{i=0}^{m}\binom{m}{i}(-1)^{i}(1)^{m-i}\right]}_{=(1-1)^{m}=0 \quad[\text { hinomid }} \\
& {\left[(a+b)^{n}=\sum_{i=0}^{n}\binom{n}{i} a^{i} b^{n-i]}\right.}
\end{aligned}
$$

Theorem (Bonferroni inequalities)
Under the inclusion-exclusion setup, for any $m=1, \ldots, n$, we have

$$
\begin{aligned}
& P\left(\cup_{i=1}^{n} A_{i}\right) \leq \sum_{k=1}^{m}(-1)^{k-1} S_{k} \\
& P\left(\cup_{i=1}^{n} A_{i}\right) \geq \sum_{k=1}^{m}(-1)^{k-1} S_{k} \quad \text { for } m \text { odd } \text { for } \text { even } .
\end{aligned}
$$

Exercise: Write out Bonferroni inequalities for $m=1,2$.

$$
\begin{aligned}
& \text { (m=1)} P\left(\bigcup_{i=1}^{n} A_{i}\right) \leqslant(-1)^{1-1} S_{1}=S_{1}=\sum_{i=1}^{n} p\left(A_{i}\right) \text { [Union loud] } \\
& m=3 \quad P\left(\bigcup_{i=1}^{n} A_{i}\right) \geqslant(-1)^{1-1} S_{1}+(-1)^{2-1} S_{2} \\
& =\sum_{i=1}^{n} P\left(A_{i}\right)-\sum_{1 \leq i_{1} i_{2} \leq n} P\left(A_{i_{1}} \cap A_{i_{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& {\left[A_{1}^{c}, \ldots, A_{0}^{c} \in B . \quad P\left(\bigcup_{i=1}^{n} A_{i}^{c}\right)=\sum_{i=1}^{n} P\left(A_{i}^{c}\right) \quad\right. \text { [Union bound] }} \\
& \text { Now }\left(\bigcup_{i=1}^{n} A_{i}^{c}\right)^{c}=\bigcap_{i=1}^{n} A_{i} \text {, so } P\left(\bigcup_{i=n}^{n} A_{i}^{c}\right)=1-\underbrace{P\left(\bigcap_{n}^{n} A_{i}\right)} \text {. } \\
& \text { Theorem (Statisticians' variant of Bonferroni's inequality) } \\
& \text { Given a probability space }(\Omega, \mathcal{B}, P) \text { and any events } A_{1}, \ldots, A_{n} \in \mathcal{B} \text {, we have } \\
& P\left(\cap_{i=1}^{n} A_{i}\right) \geq 1-\sum_{i=1}^{n} P\left(A_{i}^{c}\right) . \\
& 1-P\left(\hat{n} A_{i}\right) \leq \sum_{i}^{n} p\left(A_{i}\right) \Rightarrow p\left(\hat{n}_{i=1}^{n}\right) \geqslant 1-\sum_{i=1}^{p} P\left(A_{i}^{c}\right) .
\end{aligned}
$$

Exercise: Show that the above follows from the union bound (Boole's).
Exercise: Consider constructing $(1-\alpha) \times 100 \%$ C.I.s for parameters $\theta_{1}, \ldots, \theta_{n}$. Let A_{i} be the event that C.I. i contains $\theta_{i}, i=1, \ldots, n$. Give a way to choose α to ensure all C.I.s simultaneously contain their targets with probability $1-\alpha^{*}$.

$$
\begin{aligned}
& P(\underbrace{n}_{\sum_{\text {All C.I.s copter to rt }}^{n} A_{i}}) \geqslant 1-\sum_{i=1}^{n} P\left(A_{i}^{c}\right)=1-n \alpha^{*} P\left(A_{i}\right)=1-\alpha^{*} \text {, when } \alpha^{*}=\frac{\alpha}{n}]
\end{aligned}
$$

(1) Basics of sets
(2) Basics of probability theory
(3) Limits of sequences of sets and continuity of probability function

The limit of a sequence of sets
If $\left\{A_{n}\right\}_{n \geq 1}$ is a sequence of sets, $\lim _{n \rightarrow \infty} A_{n}$ exists and is equal to A if $\limsup _{n \rightarrow \infty} A_{n}$ and $\liminf { }_{n \rightarrow \infty} A_{n}$ exist and are both equal to A, where

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} A_{n}=\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k} \\
& \liminf _{n \rightarrow \infty} A_{n}=\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_{k}
\end{aligned}
$$

Exercise:

(1) For $A_{n}=[1 / n, 1-1 / n], n \geq 1$, check if $\lim _{n \rightarrow \infty} A_{n}$ exists; if so, find it.
(2) Make sense of $\underline{\omega} \in \lim \sup _{n \rightarrow \infty} A_{n} \Longleftrightarrow \omega \in\left\{A_{n}\right\}_{n \geq 1}$ i.o. (infinitely often).
(3) Make sense of $\omega \in \liminf _{n \rightarrow \infty} A_{n} \Longleftrightarrow \omega \in A_{n}$ ev. (eventually).
(2)

$$
\begin{aligned}
& \operatorname{limsp}_{n \rightarrow \infty} A_{n}=\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k}
\end{aligned}
$$

- 4 unt ours i.o.
(3)

$$
\begin{aligned}
\operatorname{limup}_{n \rightarrow \infty} A_{1} & =\bigcup_{n=1}^{\infty} \bigcap_{R=n}^{\infty} A_{n} \\
& =\left\{\omega: \neq n \geqslant 1 \text { s.t. } \omega \in A_{n} \quad \forall k \geqslant n\right\} \\
& =\omega \text { uhsh cuns ev. }
\end{aligned}
$$

(2)

$$
\begin{aligned}
& A_{n}=\left[\frac{1}{n}, 1-\frac{1}{n}\right] . \quad \lim _{n \rightarrow \infty} 1 n \\
& \lim _{n \rightarrow \infty} A_{n}=\bigcap_{n=1}^{\infty}\left(\bigcup_{n=n}^{\infty} A_{n}\right. \\
&=\bigcap_{n=1}^{\infty}\left[\frac{1}{n}, 1-\frac{1}{n}\right] \cup\left[\frac{1}{n+1}, 1-\frac{1}{n+1}\right] \cup \ldots \\
&=\bigcap_{n=1}^{\infty}(0,1) \\
&=(0,1) \\
& \operatorname{limin}_{n \rightarrow \infty} A_{n}=\bigcup_{n=1}^{\infty} \bigcap_{n=n}^{\infty} A_{n} \\
&=\bigcup_{n=1}^{\infty}[\underbrace{\left.\frac{1}{n}, 1-\frac{1}{n}\right]} \cap\left[\frac{1}{n+1}, 1-\frac{1}{n+1}\right] n \ldots
\end{aligned}
$$

$$
\begin{aligned}
& =\bigcup_{m}^{\infty}\left[\frac{1}{n}, 1-\frac{1}{n}\right] \\
& =(0,1) .
\end{aligned}
$$

So $\quad \lim _{n \rightarrow \infty} A_{n}=(0,1)$.
(1) Basics of sets
(2) Basics of probability theory
(3) Limits of sequences of sets and continuity of probability function
(a)

$$
\begin{aligned}
& =\left\{\omega: \forall n \geqslant 1 \quad \exists k \geqslant n \text { s.t. } \omega \in A_{k}\right\} \\
& =\{\omega: \omega \in\left\{A_{a n}\right\}_{n=1} \underbrace{\text { i.fintel }}_{\text {"inio. }} \text { oft- }\} \\
& A_{1}, A_{2}, A_{2}, \ldots \mid \ldots \quad A_{n}
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \operatorname{limun}_{n \rightarrow \infty} A_{n}=\bigcup_{n=1}^{\infty} \bigcap_{n=n}^{\infty} A_{n} \\
& =\left\{\omega: f n \geqslant 1 \text { s.t. } \omega \in A_{\mu} \forall k \geqslant n\right\} \\
& =\left\{\omega: \omega \in\left\{A_{1}\right\}_{n z_{1}} \text { "evantully" }\right\} \\
& \text { "ev." } \\
& A_{1}, A_{2}, A_{2} \ldots .
\end{aligned}
$$

(3) Lat $A_{n}=\left[\frac{1}{n}, 1-\frac{1}{n}\right], n \geqslant 0$. chat if $\lim _{n \rightarrow \infty} A_{n}$ eants. If so gin.

$$
\operatorname{limsqp}_{n \rightarrow \infty} A_{n}=\bigcap_{n=1}^{\infty} \bigcup_{R=n}^{\infty} A_{R}
$$

$$
\begin{aligned}
& =\bigcap_{n=1}^{\infty} \underbrace{\left[\frac{1}{n}, 1-\frac{1}{n}\right]}_{n} \cup \underbrace{\left[\frac{1}{n+1}, 1-\frac{1}{n+1}\right]}_{n+10} \cup \cdots \\
& =\bigcap_{n=1}^{\infty}(0,1) \\
& =(0,1)
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{limip}_{n \rightarrow \infty} A_{n} & =\bigcup_{n=n}^{\infty} \bigcap_{n=n}^{\infty} A_{n} \\
& =\bigcup_{n=0}^{\infty} \underbrace{\left[\frac{1}{n}, 1-\frac{1}{n}\right]}_{n=\operatorname{con}+n^{t}} \cap\left[\frac{1}{n+1}, 1-\frac{1}{n+1}\right] \cap \cdots \\
& =\bigcup_{n=1}^{\infty}\left[\frac{1}{n}, 1-\frac{1}{n}\right] \\
& =(0,1) .
\end{aligned}
$$

$$
\Rightarrow \quad \lim _{n \rightarrow \infty} A_{n}=(0,1) .
$$

$$
\begin{aligned}
& =\bigcup_{n=1}^{\infty} A_{k}< \\
\operatorname{limin}_{n \rightarrow \infty} A_{n} & =\bigcup_{n=1}^{\infty} \bigcap_{n=n}^{\infty} A_{n} \\
& =\bigcup_{n=n}^{\infty}\left\{A_{n}^{C} \cap A_{n+1} \cap A_{n+2} \cap \ldots .\right\} \\
& =\bigcup_{n=1}^{\infty} A_{n} \leftarrow \\
\lim _{n \rightarrow \infty} A_{n} & =\bigcup_{n=1}^{\infty} A_{n} .
\end{aligned}
$$

Define "ring" ats (annulus sets):

$$
\begin{aligned}
& R_{1}=A_{1} \backslash \\
& R_{2}=A_{2} \backslash A_{1} \\
& R_{3}=A_{3} \backslash A_{2} \\
& \vdots \\
& R_{n}=A_{1} \backslash A_{n-1} \quad n \geqslant 2
\end{aligned}
$$

Now $\quad \bigcup_{n=1}^{\infty} A_{n}=\underbrace{\bigcup_{n=1}^{\infty} R_{n}}_{\text {paine dirgond. }}$
80:

$$
\lim _{n \rightarrow 0} A_{1}
$$

$$
\begin{aligned}
P\left(\bigcup_{n=n}^{n n o d} A_{n}\right) & =P\left(\bigcup_{n=n}^{\infty} R_{n}\right) \\
& =\sum_{n=n}^{\infty} P\left(R_{n}\right)
\end{aligned}
$$

$$
=P\left(R_{1}\right)+\sum_{n=2}^{\infty} P\left(R_{n}\right)
$$

$$
\int\left(=p\left(A_{1}\right)+\sum_{n=2}^{n=2}\left[p\left(A_{n}\right)-p\left(A_{n-1}\right)\right]\right.
$$

$$
\begin{aligned}
& P\left(P_{1}\right)=P\left(A_{i}\right)=P\left(A_{1}\right)+\lim _{n \rightarrow \infty} \sum_{i=2}^{n}\left[P\left(A_{i}\right)-P\left(A_{i-1}\right)\right]
\end{aligned}
$$

For $n \geqslant 2$

$$
P\left(R_{n}\right)=P\left(A_{n} \backslash A_{n-1}\right)
$$

$$
=P\left(A_{n} \cap A_{n-1}^{c}\right)
$$

$$
=P\left(A_{n}\right)-P\left(A_{n} \cap A_{n}\right)
$$

$$
\begin{aligned}
& =P\left(A_{n}\right)-P\left(A_{n} \cap A_{n-1}\right) \\
& \left.=P\left(A_{n}\right)-P\left(A_{n-1}\right) \quad C A_{n-1}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty}[\underbrace{P\left(A_{1}\right)+\sum_{i=2}^{n}\left\{P\left(A_{i}\right)-P\left(A_{i}\right) A_{i}\right)}_{P\left(A_{-}\right)}] \\
& =\underbrace{=\lim _{n \rightarrow \infty} P\left(A_{-}\right)}_{\begin{array}{c}
P\left(A_{2}\right)-P\left(A_{1}\right) \\
+P\left(A_{1}\right)-P\left(A_{2}\right) \\
p\left(A_{1}\right)-P\left(A_{(}\right)
\end{array}}
\end{aligned}
$$

