STAT 712 fa 2022 Lec 4 slides

Random variables

Karl B. Gregory

The inverse image under X of any Borel set must belong to \mathcal{B} .

Let χ be the set of values X may take. This is called the <u>support</u> of X.

Exercise: Make (Ω, \mathcal{B}, P) for each experiment and check if X is an rv:

• Flip a coin and let X = 1 if heads, X = 0 if tails.

2 Flip a coin three times and let X = number of heads.

• Let X = time until you drop your new phone.

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(how a set in
$$O(\mathbb{R})$$
 [bool σ -alg. on \mathbb{R}), e.g. $(\frac{1}{2}, 2)$.
 $X^{-1}((\frac{1}{2}, 2)) = \{ w \in \mathcal{N} : X(w) \in (\frac{1}{2}, 2) \}$
 $= \{ H \}$
 $\in \mathcal{B}$

 $B = \begin{cases} all & all & all \\ all & all \\ all & all \\ all$

X= 20, 1, 2, 3]

 b_{-1} + (-1, 2).

$$X'((L-1,2)) = \{ u \in \Omega : X(u) = (-1,2) \}$$

= $\{ TTT, TTH, THT, 4TT \}$
E B

A probability function for X
For a random variable X on
$$(\Omega, \mathcal{B}, \mathcal{P})$$
, the function
 $P(X \in A) = P(X \in \Omega : X(\omega) \in A)$ for all $A \in \mathcal{B}(\mathbb{R})$
is a probability function on $\mathcal{B}(\mathbb{R})$.
So X makes a new p. space $(\mathbb{R}, \mathcal{B}(\mathbb{R}), \mathcal{P}_X)$.
We often refer the probability distribution of X.
Exercise: For rolling two dice we have $(\Omega, \mathcal{B}, \mathcal{P})$ given by
 $\Omega = \{(1, 1), (1, 2), (2, 1) \dots\}$
 $\mathcal{B} = \{\text{all subsets}\}$
 $P(A) = \#\{\text{points in } A\}/36$, for all $A \in \mathcal{B}$.
Let X = sum of rolls and describe \mathcal{P}_X by making a table of $\mathcal{P}_X(X = x)$ for $x \in \mathbb{R}$

$$\begin{aligned} \chi = \{ 2, 3, 4, ..., 12 \} \\ \hline \chi = \left\{ 2, 3, 4, ..., 12 \right\} \\ \hline P_{\chi}(\chi \cdot \chi) = \left\{ \frac{2}{16}, \frac{3}{16}, \frac{3}{36}, \frac{4}{36}, \frac{3}{36}, \frac{3}$$

N: readom variable
Cumulative distribution function (cdf)
$$F_X$$
 of an (X) is the function given by

$$F_X(x) = P_X(X \le x) \text{ for all } x \in \mathbb{R}.$$

$$F_X(x) = P_X(X \le x) \text{ for all } x \in \mathbb{R}.$$

$$F_X(x) = P_X(X \le x) \text{ for all } x \in \mathbb{R}.$$

$$F_X(x) = P_X(X \le x) \text{ for all } x \in \mathbb{R}.$$

$$F_X(x) = P_X(X \le x) \text{ for all } x \in \mathbb{R}.$$

$$F_X(x) = P_X(X \le x) \text{ for all } x \in \mathbb{R}.$$

$$F_X(x) \text{ for } x < 0 \text{ and for } x \ge 1.$$

$$F_X(x) \text{ for } x < 0 \text{ and for } x \ge 1.$$

$$F_X(x) \text{ for } x < 0 \text{ and for } x \ge 1.$$

$$F_X(x) \text{ for } x < 0 \text{ and for } x \ge 1.$$

$$F_X(x) \text{ for } x < 0 \text{ and for } x \ge 1.$$

$$F_X(x) \text{ for } x < 0 \text{ and for } x \ge 1.$$

$$F_X(x) \text{ for } x < 0 \text{ and for } x \ge 1.$$

$$F_X(x) \text{ for } x < 0 \text{ and for } x \ge 1.$$

(i) $F_{x}(\frac{1}{2}): P_{x}(x \leq \frac{1}{2}): \frac{25}{36}$

step (disuntu)

$$for the function F_X is a cdf if and only if$$

 $F_X(x) \le F_X(y)$ for all $x \le y$. Non decreasing
 $\lim_{x \to -\infty} F_X(x) = 0$ and $\lim_{x \to \infty} F_X(x) = 1$.
 $\lim_{x \to \infty} F_X(x) = F_X(x_0)$ for all $x_0 \in \mathbb{R}$. "Fight - continuous"

Exercise: Show that F_X is a cdf \implies F_X has the above properties.

(1) Let
$$X = \gamma$$
. Then
 $F_{x}(x) = P_{x}(X = x)$
 $= P(S \cup \epsilon \pi : X(\cup) = x)$
 $A \subset B = P(A) \in P(B)$

$$P\left(\{ u \in \Omega : X(u) \in \mathbb{R} \} \right)$$

$$F_{P,\sigma}$$

$$= P\left(J \right)$$

$$= 1.$$

$$\lim_{x \to -\rho} F_{x}(x) = D \quad \left[Sh_{uv} \quad Sim h \downarrow_{r} \right]$$

$$\sum_{x \to -\rho} F_{x}(x) = F_{x}(x) .$$

$$\lim_{x \to x_{0}} F_{x}(x) = F_{x}(x) .$$

$$(hun \quad u) \quad decase_{p} \quad se_{p} \quad Sc_{n}J_{n_{2}} \quad sub \quad bbt \quad bin \quad En = 0.$$

$$Sdt \quad A_{n} = (-\sigma, \pi_{n} + s_{n}) , n \neq 1 \quad s. \quad A_{n} \geq A_{n+1} \geq A_{n+2} , dec \quad se_{p}.$$

$$Now \quad wh$$

$$\lim_{x \to \infty} F_{x}(x + c_{n}) = \lim_{n \to \infty} P_{x}(x \in x_{0} + c_{n})$$

$$= \lim_{n \to \infty} P_{x}(x \in A_{n})$$

$$= \lim_{n \to \infty} P(y u \in \Omega; x(u) \in A_{n})$$

$$Lud: \quad s \in \mathbb{R}(1) \int_{a} \sum_{n \neq 0} P(y u \in \Omega; x(u) \in A_{n})$$

= P(Sues: X(4) = x.) $P_{\mathbf{X}}(\mathbf{X} \in \mathbf{A}_{\mathbf{x}})$ = Fx (x.).

Exercise: Let X = # free throw attempts required for you make one. Assume the attempts are independent with success probability $p \in (0, 1)$.

- **O** Give the support \mathcal{X} of X.
- **2** Begin tabulating the values $P_X(X = x)$ for each $x \in \mathcal{X}$.
- **③** Find an expression which gives $P_X(X = x)$ for any $x \in \mathcal{X}$.
- Find an expression for $F_X(x) = P_X(X \le x)$ for any $x \in \mathcal{X}$.
- **•** Draw a picture of F_X when p = 1/2.
- Verify that F_X has the three properties of a cdf.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

For a continuous rv X, for any
$$a, b \in \mathbb{R}$$
, $a < b$, we have

 $P_X(a < X < b) = P_X(a \le X \le b) = P_X(a < X \le b) = P_X(a \le X < b) = F_X(b) - F_X(a).$

Exercise: Show that if X is continuous,
$$P_X(X = x) = 0$$
 for all x.
there are set $\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \sqrt{2} \sum_{n=1}^{\infty}$

A CB => P(A) ≤ P(B)

 $o = P_X(x=x) = 0$ $\Rightarrow P_X(x=x) = 0.$

Exercise: Let X = time (months) until you drop your new phone and suppose X has the cdf given by

$$F_X(x) = \begin{cases} 1 & x \ge 0 \\ 0, & x < 0 \end{cases}$$

(ii)
$$\lim_{x\to -\infty} F_{x}(x) = 0$$
, $\lim_{x\to \infty} F_{x}(x) = 2$ Yee
 $x = 0$, $x = 0$

(fii)
$$\lim_{x \neq x_0} F(x) = F_x(x)$$
 y_y

Identically distributed-ness of two random variables Two rvs X and Y on the same probability space are called *identically distributed* if

$$P_X(X \in A) = P_Y(Y \in A)$$

for every $A \in \mathcal{B}(\mathbb{R})$. We write $X \stackrel{d}{=} Y$.

Example: The following random variables are identically distributed:

$$X = \#$$
 times you get \bigcirc in 2 rolls of a die
 $Y = \#$ times you get \bigcirc in 2 rolls of a die

So, two random variables are identically distributed if they have the same cdf.

3

イロト イヨト イヨト イヨト

Probability mass function of a discrete random variable

The probability mass function (pmf) p_X of a discrete rv X with probability distribution P_X is defined as

$$p_X(x) = P_X(X = x) \text{ for all } x \in \mathbb{R}.$$

Exercise: Find the pmfs of the following rvs based on independent Bernoulli trials with success probability *p*:

•
$$X = 1$$
 if first trial a success, $X = 0$ if a failure.

& X=number of successes in 3 trials.

• X = number of successes in *n* trials.

• X = number of trial on which the first success occurs. A^{\wedge}

$$\mathcal{N} = \begin{cases} 8_0 \cos s, f_{ai} \log s \\ \eta \\ P \\ P \\ \left(5 \frac{1}{2 \log \cos s} \right) = 0 \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

Probability density function of a continuous random variable The *probability density function (pdf)* f_X of a continuous rv X with cdf F_X is the function that satisfies

$$F_X(x) = \int_{-\infty}^{x} f_X(t) dt \text{ for all } x \in \mathbb{R}.$$

$$F_X(x) = \int_{-\infty}^{x} f_X(t) dt \text{ for all } x \in \mathbb{R}.$$

If f_X which satisfies the above is continuous, then $f_X(x) = \frac{d}{dx} F_X(x)$

Note that the cdf of a discrete rv X with pmf p_X and support \mathcal{X} can be written as

$$F_{X}(x) = \sum_{\{t \in \mathcal{X} : t \leq x\}} p_{X}(t).$$

$$F_{X}(x) = \sum_{\{t \in \mathcal{X} : t \leq x\}} p_{X}(x).$$

æ

Exercise: Consider a discrete rv X with pmf given by

$$p_X(x) = \begin{cases} \frac{e^{-\lambda}\lambda^x}{x!}, & x = 0, 1, 2, \dots \\ 0, & \text{otherwise} \end{cases}$$

for some $\lambda > 0$. Show that p_X is a valid pmf.

(i)
$$p_{X}(x) \ge 0$$
 $p_{X}(x) = 1$ $p_{X}(x) = 1$ $p_{X}(x) = 1$ $p_{X}(x) = 1$ $p_{X}(x) = \frac{1}{2}$

$$\sum_{x \in \{0, 1, 2_{Y}, ...\}} \frac{e^{-\lambda} x}{\pi!}$$

$$= \sum_{x \ge 0}^{\infty} \frac{e^{-\lambda} x}{\pi!}$$

$$= e^{-\lambda} \sum_{x \ge 0}^{\infty} \frac{\pi}{\pi!}$$

$$= e^{-\lambda} e^{-\lambda}$$

Exercise: Consider a continuous rv X with pdf given by

$$f_X(x) = \begin{cases} c \cdot e^{-x/\lambda}, & x \ge 0\\ 0, & x < 0 \end{cases}$$

for some $\lambda > 0$. Find the value *c* which makes f_X a valid pdf.

臣

We can tell the support of an rv from its pdf or pmf.

The support \mathcal{X} of a random variable X is given by

- $\{x \in \mathbb{R} : f_X(x) > 0\}$, if X is continuous with pdf f_X (wherever pdf is positive)
- $\{x \in \mathbb{R} : p_X(x) > 0\}$ if X is discrete with pmf p_X (wherever pmf is positive).

《曰》《卽》《臣》《臣》

More on finding the pdf from the cdf of a continuous rv:

- If F_X has a continuous derivative F'_X , then $f_X = F'_X$.
- Otherwise set $f_X(x) = \frac{d}{dx}F_X(x)$ on intervals over which F_X is differentiable.

Exercise: Let X be a continuous rv with cdf given by

$$F_X(x) = \begin{cases} 0, & -\infty < x < 0\\ 2x, & 0 \le x < 1/3\\ 2/3 + 1/2(x - 1/3), & 1/3 \le x < 1\\ 1, & 1 \le x < \infty. \end{cases}$$

- Draw a picture of F_X .
- **2** Find the pdf f_X of the rv X
- 3 Draw a picture of f_X .

(日) (四) (로) (로) (로) (로)

