STAT 712 fa 2022 Lee 4 slides

Random variables

Karl B. Gregory

These slides are an instructional aid; their sole purpose is to display, during the lecture, definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.

$$
-x^{-1}((c, \omega))=\{\omega \in \Omega: x(\omega) \in(a, n)\} \in \beta
$$

A random variable is a numeric enceding of the outcome of an experiment.

The inverse image under X of any Borel set must belong to \mathcal{B}.
Let \mathcal{X} be the set of values X may take. This is called the support of X.
Exercise: Make (Ω, \mathcal{B}, P) for each experiment and check if X is an rv:
(1) Flip a coin and let $X=1$ if heads, $X=0$ if tails.
(2) Flip a coin three times and let $X=$ number of heads.
(3) Let $X=$ time until you drop your new phone.
(2)

$$
\begin{aligned}
& \Omega=\{H, T\} \\
& B=\{\varnothing,\{H, T\},\{H\},\{T\}\} \\
& P(\omega)= \begin{cases}\frac{1}{2} & \omega=H \\
\frac{1}{2} & \omega=T\end{cases} \\
& X(\omega)= \begin{cases}1 & \omega=H \\
0 & \omega=T\end{cases} \\
& X=\{0,1\}
\end{aligned}
$$

Chome a st in $B(\mathbb{R})[$ bonl $\sigma-1 y$. on $\mathbb{R}]$, e.j. $(1 / 2,2)$.

$$
\begin{aligned}
x^{-1}\left(\left(\frac{1}{2}, 2\right)\right) & =\left\{\omega \in \Omega: x(\Delta) \in\left(\frac{1}{2}, 2\right)\right\} \\
& =\{H\} \\
& \in B
\end{aligned}
$$

(2)

$$
\Omega:\left\{H H \begin{array}{lll}
T H H & T T H & T T T \\
& H T H & T H T \\
H H T & H T T
\end{array}\right.
$$

$B=\{$ all arbasts of Ω, maluda Ω itule $\}<$

$$
P(c)=\frac{1}{8} \text { for } \quad \| \quad \Delta \in \Omega
$$

$$
\begin{aligned}
& x(\omega)= \begin{cases}0=T T T \\
2 & \omega \in\{T T H, T H T, H T T\} \\
2 & \omega \in\{H H T, H T H, T H H\} \\
2 & =H H H\end{cases} \\
& X=\{0,1,2,3\}
\end{aligned}
$$

bole t $(-1,2)$.

$$
\begin{aligned}
X^{-1}((-1,2)) & =\{\omega \in \Omega: X(\omega)=(-1,2)\} \\
& =\{T T T, T T H, T H T, H T T\} \\
& \in Q
\end{aligned}
$$

$(P \times x \in \in(a, b))=P(\{\omega \in \Omega: X(\omega) \in(a, b)\})$

A probability function for X

For a random variable X on $(\underline{\Omega}, \mathcal{B}, \underline{P})$, the function

is a probability function on $\mathcal{B}(\mathbb{R})$.
So X makes a new p. space $\left(\mathbb{R}, \mathcal{B}(\mathbb{R}), P_{X}\right)$.

We often refer probability distribution $\mathrm{ff} X$.
Exercise: For rolling two dice we have (Ω, \mathcal{B}, P) given by

$$
\begin{aligned}
\Omega & =\{(1,1),(1,2),(2,1) \ldots\} \\
\mathcal{B} & =\{\text { all subsets }\} \\
P(A) & =\#\{\text { points in } A\} / 36, \quad \text { for all } A \in \mathcal{B} .
\end{aligned}
$$

Let $\underline{X}=$ sum of rolls and describe P_{X} by making a table of $P_{X}(X=x)$ for \underline{X})

$$
x=\{2,3,4, \ldots, 12\}
$$

x	2	3	4	5	6	7	8	9	10	11	12
$P_{X}(x=x)$	$\frac{1}{36}$	$\frac{2}{36}$	$\frac{3}{36}$	$4 / 36$	$\frac{3}{36}$	$\frac{6}{36}$	$\frac{5}{36}$	$\frac{4}{36}$	$\frac{3}{36}$	$\frac{2}{36}$	$\frac{1}{36}$

$$
\begin{aligned}
P_{x}(x=2) & =P(\{\omega \in \Omega: X(\omega)=2\})=P(\{(1,1)\})=1 / 36 \\
P_{x}(x=3) & =P(\{\omega \in \Omega: X(\omega)=3\}) \\
& =P(\{(1,2),(2,1)\})=2 / 36 \\
P_{x}(x=4) & =P(\{\omega \in \Omega: X(\omega)=4\}) \\
& =P(\{(1,3),(2,2),(3,1)\})=3 / 3 c
\end{aligned}
$$

Cumulative distribution function
The cumulative distribution function ($c d f$) F_{X} of an X is the function given by

$$
F_{X}(\boldsymbol{x})=P_{X}(X \leq \boldsymbol{x}) \text { for all } x \in \mathbb{R} .
$$

Exercise: Let $X=\#$ times you get $: 0$ in 2 rolls of a die.
(1) Give the $\operatorname{cdf} F_{X}(x)$ for all $x \in \mathbb{R}$.
(2) Draw a detailed picture of F_{X}.
(3) Discuss interpretation of $F_{X}(1 / 2)$, say.
(9) Discuss interpretation of jump sizes.
(1) Discuss $F_{X}(x)$ for $x<0$ and for $x \geq 2$

$$
\begin{array}{ll}
\Omega=\{(1,1),(1,2),(2,1) \ldots\}, & B=\{\text { s11 s.h.sth }\} \\
P(A)=\frac{|A|}{36} \quad \forall A \in Q, & X=\{0,1,2\}
\end{array}
$$

x	0	1	2
$P_{x}(x=x)$	$\frac{25}{36}$	$\frac{10}{36}$	$\frac{1}{36}$

$$
P_{x}(x=0)=p(\{4 \in \Omega: x(\omega)=0\})=\frac{25}{36}
$$

$$
F_{x}(x)=P_{x}(x \leq x)= \begin{cases}0 & x<0 \\ \frac{25}{36} & 0 \leq x<1 \\ \frac{35}{36} & 1 \leq x<2 \\ \frac{36}{36}=1 & 2 \leq x\end{cases}
$$

(3) $\quad F_{x}\left(\frac{1}{2}\right)=P_{x}(x \leq 1 / 2)=\frac{25}{36}$

Theorem (Properties of a cdf)
The function F_{X} is a cdf if and only if
(c) $F_{x}(x) \leq F_{X}(y)$ for all $x \leq y$. Nondecressing
(2) $\lim _{x \rightarrow-\infty} F_{X}(x)=0$ and $\lim _{x \rightarrow \infty} F_{X}(x)=1$.

- $\lim _{x+x_{0}} F_{X}(x)=F_{X}\left(x_{0}\right)$ for all $x_{0} \in \mathbb{R}$. "Right-continu us"

Exercise: Show that F_{X} is a cdf $\Longrightarrow F_{X}$ has the above properties.
(1) Let $x \leq y$. Then

$$
\begin{array}{rlrl}
x \leq y & \text { Then } & \{\omega \in \Omega: x(\omega) \leq x\} \\
F_{x}(x) & =P_{x}(X \leq x) & C\{\omega \in \Omega: x(\omega) & \leq y\} \\
& =P(\xi \omega \in \Omega: X(\omega) \leq x\}) & A \subset B \Rightarrow P(A) \leq P(B)
\end{array}
$$

$$
\begin{aligned}
& \Leftrightarrow P(\{\omega \in \Omega: X(\omega) \leq y\}) \\
& =P_{X}(x \leq y) \\
& =F_{x}(y) \quad \Rightarrow \text { Nondecravy }
\end{aligned}
$$

(2) $\lim _{x \rightarrow \infty} F_{x}(x)=1$:

Chan am increasirg seguomen $\sum x_{n} \|_{n \geq 1}$ s.ch that $\lim _{n \rightarrow \infty} x_{n}=\infty$.
The dipin sto $A_{n}=\left(-\infty, x_{n}\right]$ for $n \geqslant 1$. Then $A_{n} \subset A_{n+1} \subset A_{n+2}, \ldots$ \&n $\left\{A_{n}\right\}_{n \geqslant 1}$ is an incrocing syo. of rete. $\quad\left[\bigcup_{n=1}^{\infty} A_{n}=(-\infty, \infty)\right]$

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} F_{x}\left(x_{n}\right)=\lim _{n \rightarrow \infty} P_{x}\left(x \leq x_{n}\right) \\
& =\lim _{n \rightarrow \infty} P_{x}\left(x \in\left(-\infty, x_{n}\right]\right) \\
& =\lim _{n \rightarrow \infty} P_{x}\left(x \in A_{n}\right) \\
& =\lim _{n \rightarrow \infty} P\left(\left\{\omega \in \Omega: x(\omega) \in A_{n}\right\}\right) \\
& =P(\lim _{n \rightarrow \infty} \underbrace{\left\{\omega \in \Omega: x(\omega) \in A_{n} \lambda\right.}_{\text {inc. sy. of satb hecuin }}) \\
& \text { lim at inc. ser. } t \\
& \text { suts is unian } \\
& \downarrow=P\left(\bigcup_{n=1}^{\infty}\left\{\omega \in \Omega: x(0) \in A_{n}\right\}\right)
\end{aligned}
$$

$$
\begin{aligned}
&=p(\{\omega \in \Omega: x(\omega) \in \underset{\substack{q \\
(-\infty, \infty)}}{ } \\
&=p(\Omega) \\
&=1 \\
& \lim _{x \rightarrow-\infty} F_{x}(x)=0 \quad \text { [show similody] }
\end{aligned}
$$

(3) $\lim _{x \downarrow x_{0}} F_{x}(x)=F_{x}\left(x_{0}\right)$.

Qoon x decreving seg $\left\{\varepsilon_{n}\right\}_{n \geqslant 1}$ such tht $\lim _{n \rightarrow \infty} \varepsilon_{n}=0$.
sat $A_{n}=\left[-\infty, x_{0}+\varepsilon_{n}\right], n \geq 1 \quad$ s. $\quad A_{n}>A_{n+1}>A_{n+2}$, dec sy.
Now writo

$$
\begin{aligned}
\lim _{n \rightarrow \infty} F_{x}\left(x_{0}+c_{n}\right) & =\lim _{n \rightarrow \infty} P_{x}\left(x \leq x_{0}+\varepsilon_{n}\right) \\
& =\lim _{n \rightarrow \infty} P_{x}\left(x \in A_{n}\right) \\
& =\lim _{n \rightarrow \infty} P\left(\left\{\omega \in \Omega: x(\omega) \in A_{n}\right\}\right) \\
\text { Loat. \& } P(.) \downarrow & =P(\lim _{n \rightarrow \infty}\{\underbrace{\left\{t_{0}\right\}}_{\text {deconeay sy. } \left.\left.A \in \Omega: x(\omega) \in A_{n}\right\}\right)} \\
& =P\left(\bigcap_{n=1}^{\infty}\left\{\omega \in \Omega: x(\omega) \in A_{n}\right\}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =P\left(\left\{\Delta \in \Omega: x(\omega) \leq x_{0}\right\}\right) \\
& =P_{x}\left(x \leq x_{0}\right) \\
& =F_{x}\left(x_{0}\right) .
\end{aligned}
$$

Exercise: Let $X=\#$ free throw attempts required for you make one. Assume the attempts are independent with success probability $p \in(0,1)$.
(1) Give the support \mathcal{X} of X.
(2) Begin tabulating the values $P_{X}(X=x)$ for each $x \in \mathcal{X}$.
(3) Find an expression which gives $P_{X}(X=x)$ for any $x \in \mathcal{X}$.
(9) Find an expression for $F_{X}(x)=P_{X}(X \leq x)$ for any $x \in \mathcal{X}$.
(6) Draw a picture of F_{X} when $p=1 / 2$.
(- Verify that F_{X} has the three properties of a cdf.

Continuous and discrete random variables
A random variable X with cdf F_{X} is called a
(1) continuous $r v$ if $F_{X}(x)$ is a continuous function of x
(2) discrete $r v$ if $F_{X}(x)$ is a step function of x.
(3) mixture rv if F_{X} has jumps and increasing continuous parts.

For a continuous $\mathrm{rv} X$, for any $a, b \in \mathbb{R}, a<b$, we have
$P_{X}(a<X<b)=P_{X}(a \leq X \leq b)=P_{X}(a<X \leq b)=P_{X}(a \leq X<b)=F_{X}(b)-F_{X}(a)$.

Exercise: Show that if X is continuous, $P_{X}(X=x)=0$ for all x. choice. any soy $\left\{\varepsilon_{n}\right\}_{n \geqslant 1} \downarrow 0$.

Than $\{x\} \subset\left(x-\varepsilon_{n}, x\right]$ for II $n \geqslant 1$.

$$
\begin{align*}
P_{x}(X=x) & : P_{x}\left(X \in\left(x-\varepsilon_{n}, x\right]\right) \\
& : F_{x}(x)-F_{x}\left(x-\varepsilon_{n}\right)
\end{align*}
$$

ACB

$$
\Rightarrow P(A) \leqslant P(B)
$$

Then wate

$$
\left.\begin{array}{rl}
0 \leq P_{x}(x=x) & \leqslant \lim _{n \rightarrow \infty}\left[F_{x}(x)-F_{x}\left(x-\varepsilon_{n}\right)\right] \\
& =F_{x}(x)-\lim _{n \rightarrow \infty} F_{x}\left(x-\varepsilon_{n}\right) \\
& =F_{x}(x)-F_{x}\left(\lim _{n \rightarrow \infty}\left(x-\varepsilon_{n}\right)\right) \\
& =F_{x}(x)-F_{x}(x) \\
& =0 \\
0 \leq P_{x}(x=\text { itisen nonney. }
\end{array}\right]
$$

Exercise: Let $X=$ time (months) until you drop your new phone and suppose X has the cdf given by

$$
F_{X}(x)= \begin{cases}(1)-e^{-x / 10}, & x \geq 0 \\ 0, & x<0\end{cases}
$$

(1) Verify that F_{X} has the three properties of a cdf.
(2) Use F_{X} to obtain $P_{X}(X \leq 1)$
(3) Use F_{X} to obtain $P_{X}(2<X)$
contimuous.
(4) Use F_{X} to obtain $P_{X}(1<X \leq 3)$
(1)

(i) Noadecresiy? Yes
(ii) $\quad \lim _{x \rightarrow-\infty} F_{X}(x)=0, \lim _{x \rightarrow \infty} F_{x}(x)=2$ you
(ii) $\quad \lim _{x \downarrow x_{0}} F_{x}(x)=F_{x}\left(x_{0}\right) \quad y_{s}$

$$
\text { [Continuous } \Rightarrow \text { Right continuous] }
$$

Identically distributed-ness of two random variables
Two rvs X and Y on the same probability space are called identically distributed if

$$
\left.P_{X}(X) \in A\right)=P_{Y}(\varnothing \in A)
$$

for every $A \in \mathcal{B}(\mathbb{R})$. We write $X \stackrel{d}{=} Y$.

Example: The following random variables are identically distributed:
$X=\#$ times you get \odot in 2 rolls of a die
$Y=\#$ times you get \odot in 2 rolls of a die

Theorem (Identically distributed-ness result)

The following two statements are equivalent:

- $X \stackrel{d}{=} Y$
- $F_{X}(x)=F_{Y}(x)$ for every $x \in \mathbb{R}$.

So, two random variables are identically distributed if they have the same cdf .

Probability mass function of a discrete random variable

The probability mass function (pmf) p_{X} of a discrete $r \mathcal{X}$ with probability distribution P_{X} is defined as

$$
P_{X}(x)=P_{X}(X=x) \text { for all } x \in \mathbb{R} \text {. }
$$

Exercise: Find the pmfs of the following rvs based on independent Bernoulli trials with success probability p :
(1) $X=1$ if first trial a success, $X=0$ if a failure.

O- $x^{2}=$ number of surcessesin- trids.
(3) $X=$ number of successes in n trials.
(0) $X=$ number of trial on which the first success occurs.
 q
（1）

$$
\begin{aligned}
& X(\omega)=\left\{\begin{array}{lll}
1 & \text { if } \omega=\text { s.cuers } & X=\{0,1\} \\
0 & \text { if } \omega=\text { foilon } &
\end{array}\right. \\
& {\underset{\sim}{P}}_{P_{X}}(x)=P_{X}(X=x) \\
& \text { for .ll } x \in \mathbb{R} \\
& =\left\{\begin{array}{cc}
p & x=1 \\
1-p & x=0 \\
0 & \text { otherwise }
\end{array}\right\} \\
& 巾_{x}(x)=p^{x}(1-p)^{1-x} \geq(x \in[0,1]) \\
& \text { 卫(.) the "indicatio funtion". } \\
& \mathbb{I}(\text { statanat })= \begin{cases}1 & \text { if statemet } \\
0 & \text { trie }\end{cases}
\end{aligned}
$$

（2）$X= \pm$ seccecoes in n trills

$$
\begin{gathered}
\left.X=\varepsilon_{0,1}, \ldots, n\right\} \quad \Omega= \begin{cases}5 S F S F \ldots S\end{cases} \\
P_{x}(x)=P_{X}(X=x)=\left\{\begin{array}{l}
n \\
x
\end{array} p_{p}^{x}(1-p)^{n-x} \quad \text { f.o } x=0,1, \overline{2_{0} \ldots, n}\right. \\
0 \\
P_{x}(x)=\binom{n}{x} p_{p}^{x}(1-p)^{n-x} \mathbb{L}(x \in\{0,1,2, \ldots, n\})
\end{gathered}
$$

For continues or $P_{x}(x=x)=0$ for .11 $x \in \mathbb{R}$.
Probability density function of a continuous random variable
The probability density function (pdf) f_{X} of a continuous rv X with $c d f F_{X}$ is the function that satisfies

$$
\begin{aligned}
& F_{x}(x)=\int_{-\infty}^{x} \underbrace{f_{x}(t) d t}_{\rho^{d}} \text { for all } x \in \mathbb{R} . \\
& P_{x}(\dot{x}=\alpha)
\end{aligned}
$$

If f_{X} which satisfies the above is continuous, then $f_{X}(x)=\frac{d}{d x} F_{X}(x)$.

Note that the cdf of a discrete rv X with mf p_{X} and support \mathcal{X} can be written as

$$
\begin{aligned}
& F_{X}(x)=\sum_{\{t \in \mathcal{X}: t \leq x\}} p_{X}(t) . \\
& P_{X}(X \leq x)=\sum_{\left\{t \in X: P_{X}(X=t)\right.}
\end{aligned}
$$

Exercise: Let X have cdf given by

$$
\begin{aligned}
p(1<x<2) & =p(x<2)-P(x<1) \\
& =\frac{1}{1+e^{-2}}-\frac{1}{1+e^{-1}} .
\end{aligned}
$$

$$
F_{X}(x)=\frac{1}{1+e^{-x}} \text { for all } x \in \mathbb{R}
$$

Find the pdf of X.

$$
\begin{aligned}
F_{x}(x)=\int_{-\infty}^{x} f_{x}(x) & =\frac{d}{d x} F_{x}(x) \\
& =-\frac{1}{\left(1+e^{-x}\right)^{2}} e^{-x}(-1) \\
& =\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}} \quad f_{10} \quad \| \in \mathbb{R} .
\end{aligned}
$$

$P_{x}(x \leq b)=F_{x}(b)=\int_{-\infty}^{b} f_{x}(t) d t$

$$
p_{x}(a<x<b)
$$

$$
P_{x}(a<x<b)=F_{x}(b)-F_{x}(a)=\int_{a}^{b} f_{x}(t) d t
$$

Theorem (Properties of pmfs and pdfs)

The function p_{x} is a pmf if and only if

- $p_{X}(x) \geq 0$ for all $x \in \mathbb{R}$
- $\sum_{x \in \mathcal{X}} p_{X}(x)=1 . \quad[P(\Omega)=1]$

The function f_{X} is a pdf if and only if

- $f_{X}(x) \geq 0$ for all $x \in \mathbb{R}$
- $\int_{-\infty}^{\infty} f_{X}(x) d x=1$

Exercise: Consider a discrete rv X with pmf given by

$$
\frac{p_{x}(x)}{\frac{3}{3}}= \begin{cases}\frac{e^{-\lambda} \lambda^{x}}{x!}, & x=0,1,2, \ldots \\ 0, & \text { otherwise }\end{cases}
$$

for some $\lambda>0$. Show that p_{X} is a valid pmf .
(i) $p_{x}(x) \geqslant 0$ If
(ii)

$$
\begin{aligned}
& \sum_{x \in \mathscr{X}} P_{x}(x)=1 \quad x=\{0,1,2, \ldots\} \\
& \sum_{x \in\{0,1,2,2\}} \frac{e^{-\lambda} \lambda^{x}}{x!} \\
& =\sum_{x=0}^{\infty} \frac{e^{-\lambda} \lambda^{x}}{x!} \\
& =e^{-\lambda} \sum_{x=0}^{\infty} \frac{\lambda^{x}}{x!} \\
& =e^{-\lambda} e^{\lambda} e^{\lambda} \\
& =1 .
\end{aligned}
$$

Taylor expeasion of e^{x} anound $x=0=x_{0}$

$$
\begin{aligned}
f(x) & =\sum_{k=0}^{\infty} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k} \quad \frac{d}{d x} e^{x}=e^{x} \\
e_{x_{0}}^{x} & =\frac{e^{0}(x-0)^{0}}{0!}+\frac{e^{0}}{1!}(x-0)^{1}+\frac{e^{0}(x-0)^{2}}{2!} \ldots \\
& =\sum_{i=0}^{\infty} \frac{x^{i}}{i!}
\end{aligned}
$$

Exercise: Consider a continuous rv X with pdf given by

$$
f_{X}(x)= \begin{cases}c \cdot e^{-x / \lambda}, & x \geq 0 \\ 0, & x<0\end{cases}
$$

for some $\lambda>0$. Find the value c which makes f_{X} a valid $p d f$.
$c>0$
To find $\frac{1}{2}=f_{-\infty}^{\infty} d x$

$$
\begin{aligned}
& =\underbrace{\int_{-\infty}^{0} 0 d x}_{=0}+\underbrace{\int_{0}^{\infty} c e^{-x / \lambda} d x} \\
& \left.=L_{-\lambda} e^{-x / \lambda}\right]\left.\right|_{0} ^{\infty} \\
& =c\left[0-\left(-\lambda e^{-0 / \lambda}\right)\right] \\
& =c \lambda \\
& =1 \\
& c=\frac{1}{\lambda} \\
& f_{x}(x)=\left\{\begin{array}{cl}
\frac{1}{\lambda} e^{-x / \lambda} & x \geqslant 0 \\
0 & \text { otheriss }
\end{array}\right. \\
& =\frac{1}{\lambda} e^{-x / \lambda} \mathbb{R}(x \geqslant 0) \text {. }
\end{aligned}
$$

For a variable X with probability distribution P_{X}, we often write $X \sim F_{X}$ if P_{X} has the cdf E_{X} - $X \sim p_{X}$ if P_{X} has the pmf p_{X}

- $X \sim f_{X}$ if P_{Y} has the pdf f_{X}

We can tell the support of an rv from its pdf or pmf.

The support \mathcal{X} of a random variable X is given by

- $\left\{x \in \mathbb{R}: f_{X}(x)>0\right\}$, if X is continuous with pdf f_{X} (wherever pdf is positive)
- $\left\{x \in \mathbb{R}: p_{X}(x)>0\right\}$ if X is discrete with pmf p_{X} (wherever pmf is positive).

More on finding the pdf from the cdf of a continuous rv:

- If F_{X} has a continuous derivative F_{X}^{\prime}, then $f_{X}=F_{X}^{\prime}$.
- Otherwise set $f_{X}(x)=\frac{d}{d x} F_{X}(x)$ on intervals over which F_{X} is differentiable.

Exercise: Let X be a continuous rv with cdf given by

$$
F_{X}(x)= \begin{cases}0, & -\infty<x<0 \\ 2 x, & 0 \leq x<1 / 3 \\ 2 / 3+1 / 2(x-1 / 3), & \frac{1 / 3 \leq x<1}{1 \leq x<\infty} \\ 1, & \end{cases}
$$

(1) Draw a picture of F_{X}.
(2) Find the pdf f_{X} of the $r v X$
(3) Draw a picture of f_{X}.

