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Expected value, variance, moment generating functions

Karl B. Gregory
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These slides are an instructional aid; their sole purpose is to display, during the lecture,
definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.
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Expected value of a random variable
The expected value EX of a random variable X is defined as

EX =



∑
x∈X

x · pX (x) if X discrete with pmf pX and support X

∫ ∞
−∞

x · fX (x)dx if X continuous with pdf fX

The average of many realizations of X should be close to EX .
EX is the “balancing point” of the pmf/pdf.
We often use µX to denote EX .
We often call EX the mean of X
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Exercise: Let X = up-face of one roll of a K -sided die. Find EX .
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Exercise: Let X ∼ fX (x) = 1(0 ≤ x ≤ 1). Find EX .
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Expected value of a function of a random variable
The expected value Eg(X ) of the rv g(X ), where g is any function, is

Eg(X ) =


∑

x∈X g(x) · pX (x) if X discrete with pmf pX and support X∫∞
−∞ g(x) · fX (x)dx if X continuous with pdf fX

Theorem (Expected value results)
Let X be a rv such that Eg1(X ) and Eg2(X ) exist. For a, b, c ∈ R we have:

1 E(ag1(X ) + bg2(X ) + c) = aEg1(X ) + bEg2(X ) + c

2 If g1(x) ≤ g2(x) for all x ∈ R then Eg1(X ) ≤ Eg2(X ).
3 If a ≤ g1(x) ≤ b for all x ∈ R then a ≤ Eg1(X ) ≤ b.

Prove the results.
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Exercise: Let X ∼ fX (x) = 2x−31(x ≥ 1). Find E
√
X .
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Variance of a random variable
The variance VarX of a random variable X is defined as

VarX = E(X − µX )
2,

where µX = EX .

VarX is the expected squared deviation of X from µX .
Measure of “spread” for the distribution of X .
Often use σ2

X to denote VarX .

Use σX to denote
√
VarX , which is called the standard deviation of X .

Useful expression: VarX = EX 2 − (EX )2
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Exercise: Let X ∼ pX (x) = px(1− p)1−x · 1(x ∈ {0, 1}), p ∈ (0, 1). Find VarX .
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Theorem (Mean and variance of shifted and scaled random variables)
Let X be an rv with finite mean and variance. Then for any constants a and b

E(aX + b) = aEX + b

Var(aX + b) = a2 VarX

Prove the result.

Exercise: Let X ∼ fX (x) = 1(0 ≤ x ≤ 1) and suppose Y = 4X − 2.
1 Give EY .
2 Give VarY .
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Theorem (Марков’s inequality)
For any nonnegative rv X we have

PX (X ≥ a) ≤ EX
a

for all a > 0.

Prove the result.
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Theorem (Чебышёв’s inequality)
For any rv X with mean µX and var. σ2

X <∞ and any constant K > 0, we have

PX (|X − µX | < KσX ) ≥ 1− 1
K 2 .

Any rv X lies within K st’d dev’s of its mean with prob. at least 1− 1/K 2.
E.g. any rv X lies within 4 st’d dev’s of its mean at least 93.75% of the time.

Prove the result.
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Moments about the origin and about the mean

Let X be a random variable. For each integer k , the

kth moment about the origin of X is mk = EX k

kth moment about the mean of X is m′k = E(X −m1)
k

Usually refer to moments about the origin simply as moments.

Also refer to moments about the mean as central moments.

VarX = m′2 = m2 − (m1)
2 = the 2nd moment minus the 1st moment squared
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Sometimes moments do not exist (diverge to ±∞ or are like “∞±∞”):

Example: Let X ∼ fX , where

fX (x) =


λ

π

sin2(x/λ)

x2 , x 6= 0

1
πλ

, x = 0.

for some λ > 0.

Moments EX and EX 2 e.g. do not exist.
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Moment-generating function
The moment-generating function (mgf) MX of a rv X is the function given by

MX (t) = EetX ,

provided the expectation is finite for t in a neighborhood of 0.

“A moment-generating function is a function that generates moments.”
–Dr. Josh Tebbs
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Theorem (generating moments with the moment-generating function)
If X is a rv with mgf MX , then

EX k = M
(k)
X (0),

where

M
(k)
X (0) =

(
d

dt

)k

MX (t)
∣∣∣
t=0

.

Recipe: To get the kth moment we
1 differentiate the mgf k times with respect to t,
2 evaluate the result at t = 0.

Prove the result.
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Exercise: Let X ∼ Exponential(λ), so that

fX (x) =
1
λ
e−x/λ1(x > 0)

for some λ > 0.
1 Find the mgf of X .
2 Use the mgf of X to find EX and VarX .
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Exercise: Let X ∼ Binomial(n, p), so that

pX (x) =

(
n

x

)
px(1− p)n−x for x = 0, 1, . . . , n

for some p ∈ (0, 1).
1 Find the mgf of X .
2 Use the mgf of X to find EX and VarX .
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Mgfs really more useful for characterizing distributions than for getting moments.

Theorem (identification of distribution by mgf)
Suppose X ∼ FX , Y ∼ FY and EX k <∞, EY k <∞ for all k = 1, 2, . . . Then:

MX and MY exist and MX (t) = MY (t) ∀t in a n’hood of 0 ⇐⇒ X
d
= Y .

If X ,Y have bounded support, EX k = EY k ∀k = 1, 2, . . . ⇐⇒ X
d
= Y .

So rvs with the same mgf have the same distribution; the mgf identifies the dist.

Note:
1 MX exists

6⇐=
=⇒ EX k <∞ for all k = 1, 2, . . .

2 In general, EX k = EY k , k = 1, 2, . . . 6=⇒ X
d
= Y
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Example: The rvs X ∼ fX and Y ∼ fY , with

fX (x) =
1

3
√
π
|x |−2/3 exp(−|x |2/3)

fY (y) = fX (y)(1+ 0.5 · (cos(
√
3|x |2/3)−

√
3 sin(

√
3|x |2/3)))

are such that EX k = EY k for each k = 1, 2, . . . See Berg (1988)
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Existence of abs. moment implies existence of lower order moments
If E|X |m <∞ then EX k exists and is finite for all k ≤ m.

Prove the result.
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Theorem
Let X have mgf MX (t). Then for any constants a and b the mgf of Y = aX + b is

MY (t) = ebtMX (at).

Prove the result.

Exercise: Let X ∼ Poisson(λ), i.e. X ∼ pX (x) =
e−λλx

x!
· 1(x ∈ {0, 1, 2, . . . }).

1 Find the mgf of X .
2 Find the mgf of Y = (X − λ)λ−1/2.
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Convergence of a sequence of mgfs
Let X1,X2, . . . be rvs with cdfs F1,F2, . . . and mgfs MX1 ,MX2 , . . . such that

lim
n→∞

MXn(t) = MX (t) for all t in a neighborhood of 0,

where MX is an mgf with corresponding cdf FX . Then

lim
n→∞

FXn(x) = FX (x)

for all x at which FX is continuous.

We will later use mgfs to prove a version of the Central Limit Theorem!

Exercise: For each n ≥ 1 let Xn ∼ Poisson(λn) and Yn = (Xn − λn)λ−1/2
n . Show

that if λn →∞ as n→∞ then

lim
n→∞

MYn(t) = et/2 (= mgf of Normal(0, 1) distribution)
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Christian Berg. The cube of a normal distribution is indeterminate. The Annals of
Probability, pages 910–913, 1988.
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