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Suite of ought-to-know probability distributions

Karl B. Gregory
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These slides are an instructional aid; their sole purpose is to display, during the lecture,
definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.
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Discrete distributions

Distributions related to Bernoulli trials

Let Xi =

{
1 success
0 failure i = 1, 2, . . . indicate outcomes of indep. Bernoulli trials.

1 Y = X1 = success of single trial =⇒ Y ∼ Bernoulli(p),

pY (y) = py (1− p)1−y · 1(y ∈ {0, 1})

2 Y =
∑n

i=1 Xi = # successes in n trials =⇒ Y ∼ Binomial(n, p),

pY (y) =
(
n
y

)
py (1− p)n−y · 1(y ∈ {0, 1, 2, . . . , n})

3 Y = min{i : Xi = 1} = # of trial of 1st success =⇒ Y ∼ Geometric(p),

pY (y) = (1− p)y−1p · 1(y ∈ {1, 2, . . . })

4 Y = min{i :
∑i

j=1 Xj = r} = # of trial of rth succ. =⇒ Y ∼ negBin(r , p),

pY (y) =
(
y−1
r−1

)
(1− p)y−rpr · 1(y ∈ {r , r + 1, r + 2, . . . })

Exercise: Derive these pmfs; then find mean, variance, and mgf of each.
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Discrete distributions

Hypergeometric distribution
Draw K ≥ 0 marbles from a bag of N ≥ 0 marbles, of which M ≥ 0 are red.

Then X = # red marbles drawn =⇒ X ∼ Hypergeometric(N,M,K ), has pmf

pX (x) =

(
M
x

)(
N−M
K−x

)(
N
K

) · 1(x ∈ {max(K − (N −M), 0), . . . ,min(K ,M)}).

Exercise: For X ∼ Hypergeometric(N,M,K ), find EX and VarX .
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Discrete distributions

Discrete uniform distribution and empirical distribution

1 If X takes the values 1, . . . ,K with prob. 1/K then X ∼ discUnif(K ).

pX (x) =
1
K
· 1(x ∈ {1, . . . ,K})

2 If X takes the values x1, . . . , xn with prob. 1/n then X ∼ empDist(x1, . . . , xn).

pX (x) =
1
n
· 1(x ∈ {x1, . . . , xn})

Exercise: Give the mean and variance of X ∼ empDist(x1, . . . , xn).
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Discrete distributions

Poisson distribution
For some λ > 0, let Yn ∼ Binomial(n, λ/n) for n = 1, 2, . . . Then

lim
n→∞

MYn(t) = MY (t) = eλ(e
t−1) for all t ∈ R,

where MY (t) is the mgf of Y ∼ Poisson(λ), which has pmf

pY (y) =
e−λλy

y !
· 1(y ∈ {0, 1, 2, . . . }).

So for large n, Yn ∼ Binomial(n, λ/n) behaves like Y ∼ Poisson(λ).

Often posited for # of occurrences of an event per unit of time/space, where
the events occur independently from one another, and
are as likely to occur in any time/space interval as in any other.

Exercise: Find mean and variance and derive mgf.
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Continuous distributions

The pdf of the Uniform(a, b) distribution is given by

fX (x ; a, b) =
1

b − a
1(a < x < b) for x ∈ R,

for a < b.
Parameters:

I a is the lower bound of the support
I b is the upper bound of the support

The Uniform(0, 1) pdf is fX (x) = 1(0 < x < 1).
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Continuous distributions

pdfs of several Normal distributions
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Continuous distributions

The pdf of the Normal(µ, σ2) distribution is given by

fX (x ;µ, σ2) =
1√
2π

1
σ

exp

[
− (x − µ)2

2σ2

]
for x ∈ R.

Parameters:
I µ ∈ R is a location parameter
I σ > 0 is a scale parameter

If X ∼ Normal(µ, σ2), then
I EX = µ
I VarX = σ2

I X has mgf MX (t) = eµt+σ
2t2/2 for all t ∈ R

The pdf and cdf of the Normal(0, 1) distribution get special notation:

φ(z) =
1√
2π

e−z
2/2

Φ(z) =

∫ z

−∞

1√
2π

e−t
2/2dt for z ∈ R.
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Continuous distributions

Exercises: Let X ∼ Normal(µ, σ2) and Z ∼ Normal(0, 1). Show

1 MX (t) = eµt+σ
2t2/2 for all t ∈ R

2 X
d
= σZ + µ

3 EZ = 0
4 VarZ = 1
5 EX = µ

6 VarX = σ2

7
∫∞
−∞ φ(z)dz = 1
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Continuous distributions

pdfs of several Gamma distributions
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Continuous distributions

The pdf of the Gamma(α, β) distribution is given by

fX (x ;α, β) =
1

Γ(α)βα
xα−1 exp

[
− x

β

]
for x > 0.

Parameters:
I α > 0 is a shape parameter
I β > 0 is a scale parameter

If X ∼ Gamma(α, β), then
I EX = αβ
I VarX = αβ2

I X has mgf MX (t) = (1− βt)−α for t < 1/β.
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Continuous distributions

The gamma distributions are brought to you by the gamma function.

Gamma function
For any α ∈ C with Re(α) > 0, the gamma function is given by

Γ(α) =

∫ ∞
0

uα−1e−udu.

These are some of its properties:
1 Γ(α + 1) = αΓ(α) for all Re(α) > 0.
2 Γ(n) = (n − 1)! for any integer n > 0.
3 Γ(1/2) =

√
π.

Exercise:
1 Prove the above properties.
2 Show EX = αβ if X ∼ Gamma(α, β).
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Continuous distributions

pdfs of several Exponential distributions
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Continuous distributions

The pdf of the Exponential(λ) distribution is given by

fX (x ;λ) =
1
λ

exp
[
−x

λ

]
for x > 0.

Parameter:
I λ > 0 is a scale parameter

If X ∼ Exponential(λ), then
I EX = λ
I VarX = λ2

I X has mgf MX (t) = (1− λt)−1 for t < 1/λ.
I X ∼ Gamma(1, λ)

Exercise: Find the cdf of the Exponential(λ) distribution.
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Continuous distributions

pdfs of several Chi-squared distributions
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Continuous distributions

The pdf of the Chi-squared(ν) distribution is given by

fX (x ; ν) =
1

Γ(ν/2)2ν/2
xν/2−1 exp

[
−x

2

]
for x > 0.

Parameter:
I ν > 0 is called the degrees of freedom

If X ∼ Chi-squared(ν), then
I EX = ν
I VarX = 2ν
I X has mgf MX (t) = (1− 2t)−ν/2 for t < 1/2.
I X ∼ Gamma(ν/2, 2)
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Continuous distributions

pdfs of several Beta distributions
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Continuous distributions

The pdf of the Beta(α, β) distribution is given by

fX (x ;α, β) =
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1 for x ∈ (0, 1).

Parameter:
I α > 0 is a shape parameter
I β > 0 is a shape parameter

If X ∼ Beta(α, β), then
I EX =

α

α+ β

I VarX =
αβ

(α+ β)2(α+ β + 1)
I X has mgf MX (t) = 1 +

∑∞
k=1

tk

k!

(∏k−1
r=0

α+r
α+β+r

)
for all t ∈ R.

The Beta(1, 1) distribution is the Uniform(0, 1) distribution.
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Continuous distributions

The beta distributions are brought to you by the beta function.

Beta function
For any α, β ∈ C with Re(α) > 0 and Re(β) > 0, the beta function is given by

B(α, β) =

∫ 1

0
uα−1(1− u)β−1du =

Γ(α)Γ(β)

Γ(α + β)
.

Exercise: Show EX = α/(α + β) if X ∼ Beta(α, β).
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Exponential families

We will now start talking about families of distributions.

Parametric family
For a pdf/pmf f (·; θ) depending on θ = (θ1, . . . , θd) ∈ Θ, the collection

{f (·; θ) : θ ∈ Θ}

of pdfs/pmfs is called a parametric family of pdfs/pmfs .

Example: The Beta parametric family is the set of pdfs{
f (x ;α, β) =

Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−11(0 < x < 1) : α > 0, β > 0

}
.
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Exponential families

Exponential family
A parametric family {f (·; θ) : θ ∈ Θ} is called an exponential family if each
member can be written as

f (x ; θ) = h(x)c(θ) exp

(
k∑

i=1

wi (θ)ti (x)

)
, x ∈ R

for some real-valued functions
h(·) ≥ 0 and t1(·), . . . , tk(·) not depending on θ and
c(·) ≥ 0 and w1(·), . . . ,wk(·) not depending on x .

Why though??
Many common families of distributions are exponential families.
Generalized linear models are based on exponential family distributions.
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Exponential families

Exercise: Show that the Normal(µ, σ2) pdfs for µ ∈ R and σ > 0 are an
exponential family.
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Exponential families

Exercise: Show that the Poisson(λ) pmfs for λ > 0 are an exponential family.
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Exponential families

Curved versus full exponential families
An exponential family {f (·; θ) : θ ∈ Θ} is a curved exponential family if
d = dim(Θ) < k , with k from the representation

f (x ; θ) = h(x)c(θ) exp

(
k∑

i=1

wi (θ)ti (x)

)
, x ∈ R.

If d = k , then {f (·; θ) : θ ∈ Θ} is a full exponential family .

Examples:
1 The Beta(α, 2α) pdfs for all α > 0.
2 The Normal(µ, µ2) pdfs for all µ ∈ R.
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