Begin with X, transform to $Y=g(x)$. How to get dist. $f Y$ from dist. of X. STAT 712 fa 2022 Lee 7 slides

Transformations of a random variable

Karl B. Gregory
University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture, definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.

Let X be a rv with support and let $Y=g(X)$ for some $g: \mathcal{X} \rightarrow \mathcal{Y}^{\mathcal{Y}} \cdot T_{\text {support of }}^{Y}$ Examples:

- $X=$ diameter of sand dollar. $Y=\pi \cdot(X / 2)^{2}$, surface area of underside.
- $X=$ daily rate of return. $Y=A(1+X)$, value of investment A after a day.
- $X=$ white blood cells per $\mu / . Y=\mathbf{1}\left(X>11 \times 10^{3}\right)$, whether above normal.

How to find the distribution of Y from the distribution of X ?

Inverse mapping of a function

For any function $g: \mathcal{X} \rightarrow \mathcal{Y}$, define the mapping

$$
g^{-1}(B)=\{x \in \mathcal{X}: g(x) \in B\} \quad \text { for all } B \subset \mathcal{Y} .
$$

We call $g^{-1}(B)$ the inverse image of B under g.
For a single point $\{y\} \in \mathcal{Y}$, write $g^{-1}(\underline{y}):=\underline{g}^{-1}(\{y\})=\{\underline{x} \in \mathcal{X}: g(x)=y\}$.
So g^{-1} takes subsets of \mathcal{Y} and returns subsets of \mathcal{X}.

$$
Y=g(x)
$$

Distribution of transformed random variable
To find the probability distribution of Y, we note that for any $A \in \mathcal{B}(\mathbb{R})$ we have

$$
P(Y \in A)=P(g(X) \in \underline{A})=P\left(X \in g^{-1}(A)\right)
$$

Exercise: Let \mathcal{X} take the values in $\mathcal{X}=\{-2,-1,0,1,2\}$ with the probabilities

x	-2	-1	0	1	2
$P(X=x)$	$1 / 9$	$2 / 9$	$3 / 9$	$2 / 9$	$1 / 9$

Tabulate the probability distribution of $y=|X| . \quad y=g(x)=|x|$
(1) Identity $y, \quad y=\{0,1,2\}$

y	$\delta^{-1}(y)$
0	$\{0\}$
1	$\{-1,1\}$
2	$\{-2,2\}$

$$
\begin{aligned}
P(y=0)=P(\delta(x)=0)=P\left(x \in \gamma^{-1}(0)\right) & =P(x \in\{0\}) \\
& =3 / 9 \\
P(y=1)=P(\delta(x)=1)=P\left(x \in \gamma^{-1}(1)\right) & =P(x \in\{-1,13) \\
& =\frac{4}{9} \\
P(y=2)=P(\delta(x)=2)=P\left(x \in \gamma^{-1}(2)\right) & =P(x \in\{-2,2\}) \\
& =\frac{2}{9}
\end{aligned}
$$

y	0	1	2
$P(y=y)$	$3 / 9$	$\frac{4}{9}$	$\frac{2}{9}$

Finding the pmf of a transformed discrete rv
If X is discrete with pm p_{X} hen $Y=g(X)$ is discrete with pmf

$$
=\begin{aligned}
& \underbrace{p_{Y}(y)=P(Y=y)}=\underbrace{\left.g^{-1}(y)\right)}=\sum_{x \in g^{-1}(y)} e_{X(x)}))
\end{aligned}
$$

Any transformation of a discrete rv will result in a discrete rv.

Strategy

(1) Find the support \mathcal{Y} of Y.
(2) Identify the inverse function $g^{-1}(y)$ for each $y \in \mathcal{Y}$.

Exercise:

(1) Let $X \sim$ Poisson (λ). Find the pmf of $Y=1(X>10)= \begin{cases}1 & \text { if } X>10 \\ 0 & \text { if } X \leqslant 10\end{cases}$
(2) Let $X \sim \operatorname{Binomial}(n, p)$. Find the pmf of $Y=n-X$.
(0) $y=\{0,1\}$

y	$8^{-1}(y)$
0	$\{x \in x: g(x)=0\}=\{0,1, \ldots 10\}$
1	$\{x \in x: g(x)=1\}=\{1,12, \ldots\}$

$$
\begin{aligned}
& \text { For } \quad y \in\{0,1\} \\
& p_{y}(y)=P(Y=y)= \begin{cases}P(X \in\{0,1, \ldots, 10\}) & y=0 \\
P(X \in\{11,12, \ldots,\}) & y=1\end{cases} \\
& = \begin{cases}\sum_{x=0}^{10} \frac{e^{-\lambda} \lambda^{x}}{x!} & y=0 \\
\sum_{x=11}^{\infty} \frac{e^{-\lambda} \lambda^{x}}{x!} & y=1\end{cases} \\
& =\left(\sum_{x=11}^{\infty} \frac{e^{-\lambda} \lambda}{x!}\right)^{y}\left(1-\sum_{x=11}^{\infty} \frac{e^{-\lambda} \lambda^{x}}{x!}\right)^{1-y}
\end{aligned}
$$

(2)

$$
\begin{aligned}
& X \sim{k_{x}}(x)=\binom{n}{x} p_{p^{x}}(1-p)^{n-x} \mathbb{Z}(x \in\{0,1, \ldots, n\}) \\
& x=\{0,1, \ldots, n\} \\
& y=f(x)=n-x
\end{aligned} \quad y=\{0,1, \ldots, n\} .
$$

y	$j^{-1}(y)$
0	n
1	$n-1$
n	0

$$
\Leftrightarrow \begin{aligned}
& y=f(x)=n-x \\
& x=n-y=\delta^{-1}(y)
\end{aligned}
$$

$$
p_{y}(y)=P(\underline{Y=y})=P\left(\begin{array}{c}
d \\
n-x \\
=y
\end{array}\right)
$$

$$
\begin{aligned}
& =p(\delta(x)=y)=p(x=n-y) \\
& =p\left(x \in \delta^{-1}(y)\right) \\
& =p(x=n-y) \\
& =p_{x}(n-y) \\
& =\binom{n}{n-y} p^{n-y}(1-r)^{n-(n-y)} \\
& =\underbrace{}_{\binom{n}{y}(1-p)^{y} p^{n-y}}
\end{aligned}
$$

punt of Binsmial $(n, 1-p)$

Finding the pdf of a transformed continuous rv by the cdf method Let X be a continuous rv with pdf f_{X}. Then the pdf of $Y=g(X)$ is given by

Then $f_{Y}(y)=\frac{d}{d y} F_{Y}(y)$, provided this is defined over the support of Y.

Exercises:

(1) Let $X \sim f_{X}(x)=(3 / 2) \times 1(-1 \leq x \leq 1)$. Find $p d f$ of $Y=|X|$.
(3) Let $X \sim$ Uniform $(0,1)$. Find pdf of $Y=-\log X$.
(1) $y=g(x)=|x|$.

$$
X=[-1,1]
$$

Fo. $y \in[0,1]$

$$
\begin{aligned}
& F_{y}(y)=P(y \leqslant y)=P(|x| \leq y)=P(-y \leq x \leq y) \\
&=\int_{\left\{x:|x| \leq y^{3} \leq[-x, y\}\right.} \frac{3}{2} x^{2} d x \int_{-y}^{y} \frac{3}{2} x^{2} d x \\
&=\left.\int_{-y}^{y} \frac{3}{2} x^{2} d x \quad \frac{x^{3}}{2}\right|_{-y} ^{y} \\
&=\frac{y^{3}}{2}-\frac{(-y)^{3}}{2} \\
&=y^{3} \\
& y_{y}(y)= \begin{cases}0 & 0 \leq y \leq 1 \\
y^{3} & 1 \leq y\end{cases}
\end{aligned}
$$

Th a

$$
f_{y}(y)=\frac{d}{\partial_{y}} F_{y}(y)=3 y^{2} \quad \text { for } \quad y \in[0,1]
$$

(2) $X \sim \operatorname{Un}_{\text {n. }}(0,1)$, Find f_{y}.

$$
\begin{aligned}
& f_{x}(x)=1(0<x<1) \\
& x=(0,1)
\end{aligned}
$$

Support of y is $y=(0, \infty)$
For $y>0$

$$
\begin{aligned}
F_{y}(y) & =P(y \leqslant y) \\
& =P(-\log X \leqslant y \\
& =P\left(x \geqslant e^{-y}\right) \\
& =\int_{e^{-y}}^{\infty} 1(0<x<1) d x
\end{aligned}
$$

$$
=\int_{-x}^{1} 1 d x
$$

$$
=1-e^{-y}
$$

Theorem (transformation method)

Let X be a continuous rv with support \mathcal{X} and let $Y=g(X)$ have support \mathcal{Y}.
Suppose
(1) g is monotone on \mathcal{X} and
(2) $\frac{d}{d y} g^{-1}(y)$ is continuous on \mathcal{Y}.

Then

$$
\underline{f_{Y}(y)}=\underline{f_{X}}\left(g^{-1}(y)\right)\left|\frac{d}{d y} g^{-1}(y)\right| \quad \text { for } y \in \mathcal{Y}
$$

Exercises: Prove the above and apply to the following:
(1) Let $X \sim$ Exponential (λ). Find the pdfof $Y=\sqrt{X}$.
(2) Let $X \sim \operatorname{Gamma}(\alpha, \beta)$. Find the pdf of $Y=X^{-1}$.
(3) Let $X \sim \operatorname{Exponential}(1)$. Find the pdf of $Y=-\log X$.
(2)

$$
\begin{aligned}
& x \sim f_{x}(x)=\frac{1}{\lambda} e^{-x / \lambda} \mathbb{R}(x>0), \quad y=\sqrt{x}, \quad \text { so } \quad y=(0, \infty) \\
& y=\sqrt{x}=\delta(x) \quad \Leftrightarrow \quad x=y^{2}=\delta^{-1}(y), \quad \frac{d}{d y} \delta^{-1}(y)=\frac{d}{d_{y}} y^{2}=2 y
\end{aligned}
$$

For $y \in(0, \infty)$,

$$
\begin{aligned}
& f_{y}(y)=\frac{1}{\lambda} e^{-y^{2} / \lambda}|2 y|=\frac{2 y}{\lambda} e^{-y^{2} / \lambda} . \\
& f_{y}(y)=\frac{2 y}{\lambda} e^{-y^{2} / \lambda} 2(y>0)
\end{aligned}
$$

Derin Trasporm methad:
Lat δ monotom \uparrow. $V_{\text {se }}$ cdp methed:

$$
\begin{aligned}
& F_{y}(y)=P(y \leqslant y) \\
& \text { mono } \uparrow \downarrow=P(g(x) \leqslant y) \\
& =P\left(x \leqslant g^{-1}(y)\right) \\
& =F_{x}\left(\delta^{-1}(x)\right)
\end{aligned}
$$

Lot γ be

$$
\begin{aligned}
& F_{y}(y)=P(y \leqslant y) \\
& =P(g(x) \leqslant y) \\
& =P\left(x \geqslant \gamma^{-1}(y)\right) \\
& =1-P\left(x<\delta^{-1}(y)\right) \\
& =1-F_{x}\left(\delta^{-1}(x)\right) \\
& f_{y}(y)=\frac{d}{d_{y}} F_{y}(y)=\frac{d}{d_{y}}\left[1-F_{y}\left(\delta^{\prime \prime}(y)\right)\right] \\
& =\Theta f_{x}\left(g^{-1}(x)\right) \underbrace{\frac{d}{d y} g^{-1}(y)}_{20} \\
& =f_{x}\left(g^{-1}(y)\right)\left|\frac{d}{d y} \delta^{-1}(y)\right| \text {. }
\end{aligned}
$$

Exercise: Let $\underline{Z} \sim \operatorname{Normal}(0,1)$. Find the pdf of $W=Z^{2}$.
(i) Writ t douma support of W. $W=[0, \infty)$

For $w \in[0, \infty)$,

$$
\begin{aligned}
F_{W}(w) & =P(W \leq w) \\
& =P\left(z^{2} \leq w\right) \\
& =P(-\sqrt{w} \leq z \leq \sqrt{w})
\end{aligned}
$$

$$
\begin{aligned}
& =\Phi(\sqrt{n})-\Phi(-\sqrt{n}) \\
& f_{w}(w)=\frac{d}{d w} F_{w}(w) \\
& \left.=\left(\frac{d}{d \omega}\right] \Phi(\sqrt{w})-\Phi(-\sqrt{w})\right] \\
& =\phi(\sqrt{\omega}) \frac{d}{d \omega} \sqrt{\omega}-\phi(-\sqrt{\omega})\left(\frac{d}{d \omega}-\sqrt{\omega}\right) \\
& =\phi(\sqrt{\omega}) \frac{1}{2 \sqrt{\omega}}+\phi(-\sqrt{\omega}) \frac{1}{2 \sqrt{\omega}} \\
& =2 \phi(\sqrt{n}) \frac{1}{2 \sqrt{n}} \\
& =\frac{1}{\sqrt{w}} \phi(\sqrt{w}) \\
& =\frac{1}{\sqrt{w}}\left(\frac{1}{\sqrt{2 \pi}}\right) e^{-\frac{(\sqrt{w})^{2}}{2}} \\
& =\frac{1}{\int\left(\frac{1}{2}\right) 2^{1 / 2}} \omega^{1 / 2-1} e^{-\omega / 2} \text { pdf op } \operatorname{Gamma}\left(\frac{1}{2}, 2\right) \\
& \text { a.K.a. Chi-sfoare with } \\
& a f=1 \text {. }
\end{aligned}
$$

$$
y=f(x)
$$

Theorem (Probability integral transform)
Let X be a rv with continuous cdf F_{X}. Then $Y=F_{X}(X) \sim \operatorname{Uniform}(0,1)$.

Exercise: Prove the above (assume F_{X} is monotone).
$\Rightarrow F_{x}^{-1}$ exists, is Let $y=F_{x}(x)$. Then cd of y is

$$
\begin{aligned}
F_{y}(y) & =P(y \leq y) \\
& =P\left(F_{x}(x) \leq y\right) \\
& =P\left(F_{x}^{-1}\left(F_{x}(x)\right) \leq F_{x}^{-1}(y)\right) \\
& =P\left(x \leq F_{x}^{-1}(y)\right) \\
& =F_{x}\left(F_{x}^{-1}(y)\right) \\
& =y
\end{aligned}
$$

What is af of Unif $(0,1)$?

Unif $(0,1)$ cdf is $F_{y}(y)= \begin{cases}0 & y \leqslant 0 \\ y & 0<y<1 \\ 1 & 1 \leqslant y\end{cases}$

If F_{X} not continuous, or continuous but not monotone, F_{X}^{-1} is not well-defined...

Quantile function

The quantile function Q_{X} of a $r v X$ with $\operatorname{cdf} F_{X}$ is the function

$$
Q_{X}(\theta)=\inf \left\{x: F_{X}(x) \geq \theta\right\} \text { for } \theta \in(0,1) .
$$

The θ-quantile of the rv with $\operatorname{cdf} F_{X}$ is defined as $Q_{X}(\theta)$.
$\stackrel{{ }^{\circ} \boldsymbol{n} \boldsymbol{X}}{\gamma}$

- If F_{X} is continuous and strictly increasing then $Q_{X}(\theta)=F_{X}^{-1}(\theta)$.
- $Q_{X}:(0,1) \rightarrow \mathcal{X}$, where \mathcal{X} the support of X.
- Q_{X} is always left-continuous.

Exercises: Find the quantile function of
(1) $X \sim \operatorname{Binomial}(2,1 / 2)$ distribution.
(2) $X \sim$ Exponential (λ) distribution.
(3) $X \sim \operatorname{empDist}\left(x_{1}, \ldots, x_{n}\right)$.) hw
(1) $X \sim \operatorname{Biam}(2,1 / 2)$ dist (flip, . coin twin)

x	0	1	2
$p(x=x)$	$1 / 4$	$1 / 2$	$1 / 4$

$$
F_{x}(x)= \begin{cases}0 & x<0 \\ 1 / 4 & 0 \leq x<1 \\ 3 / 4 & 1 \leq x<2 \\ 1 & 2 \leq x\end{cases}
$$

$Q_{x}(u)=\inf \left\{x \in \mathcal{H}: F_{x}(x) \geqslant n\right\} \quad$ f. $\quad u \in(0,1)$. $Q_{x}:(0,1) \rightarrow x$

(2) $X \sim E_{\text {xponatic }}(\lambda)$. The $e d f$ is

$$
F_{x}(x)=\left\{\begin{array}{l}
0, \quad x \leqslant 0 \\
1-e^{-x / \lambda}, x>0
\end{array}\right.
$$

ca

$$
Q_{x}(x)=F_{x}^{-1}(n) \quad \sin n F_{x} \text { monotom }
$$

To find $Q_{x}(m)$ write

$$
u=1-e^{-x / \lambda},
$$

a solve for x.

$$
\begin{aligned}
& u=1-e^{-x / \lambda} \\
& \Leftrightarrow 1-x=e^{-x / \lambda} \\
& \Leftrightarrow \log (1-x)=-x / \lambda \\
& \Leftrightarrow-\lambda \log (1-u)=x
\end{aligned}
$$

8.

$$
Q_{x}(x)=-\lambda \log (1-x)
$$

Random number generation
Reverse the probability integral transform to generate X for any F_{X} :
(1) Generate a Uniform $(0,1)$ realization.Set $X Q_{X}(U)$ where $Q_{X}(u)=\inf \left\{x: F_{X}(x) \geq u\right\}$ is the quartile function.

Exercise: Prove the above (assume F_{X} is monotone so that $Q_{X}=F_{X}^{-1}$).
Many careers spent getting computers to generate "random" Uniform $(0,1)$ values.
Let $U \sim \operatorname{UniP}(0,1)$, and set $X=F_{X}^{-1}(U)$.
The

$$
\begin{aligned}
P(x \leq x)=P\left(F_{x}^{-1}(u) \leq x\right) & =P\left(F_{x}\left(F_{x}^{-1}(u)\right) \leq F_{x}(x)\right) \\
& =P\left(U \leq F_{x}(x)\right)=F_{x}(x)
\end{aligned}
$$

9. X has edt F_{x}.

Maybe on exam.
Exercise: Get realization of $X \sim$ Exponential (λ) beginning with $U \sim \operatorname{Unif}(0,1)$.
The quantic function is $Q_{x}(x)=-\lambda \log (1-x)$
Just sot $X=-a \lg (1-U)$

For shift-and-scale transformations, remember that you can use mgfs:

Theorem (mgf method)

For any constants a and b, the $m g f$ of $a X+b$ is

$$
M_{a X+b}(t)=e^{b t} M_{X}(a t)
$$

Exercises:

(1) Let $X \sim \operatorname{Gamma}(\alpha, \beta)$. Find distribution of $Y=X / \beta$.
(2) Let $X \sim \operatorname{Normal}(\mu, \sigma)$. Find distribution of $Z=(X-\mu) / \sigma$.

$f_{x}\left(x_{j}, \mu\right)$

Location-scale families

For any pdf f_{Z} the family of pdfs given by

$$
\left.\left\{f_{X}(x ; \mu, \sigma)=\frac{1}{\sigma}\left(\frac{x-\mu}{\sigma}\right)\right) \iota \in \mathbb{R}, \sigma>0\right\}
$$

is the location-scale family with standard pdf f_{Z}. We call

- μ the location parameter
- σ the scale parameter

Example: A location-scale family with standard $\operatorname{pdf} f(z)=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}$ are

$$
\left\{f\left(x ; \mu, \sigma^{2}\right)=\frac{1}{\sigma} \frac{1}{\sqrt{2 \pi}} \exp \left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right], x \in \mathbb{R}: \mu \in \mathbb{R}, \sigma>0\right\}
$$

The location and scale parameters are μ and σ, respectively.

Just scale or just location families. . .
For any pdf f_{Z} the families of pdfs given by

$$
\text { and } \quad \begin{aligned}
& \left\{f_{X}(x ; \sigma)=(1 / \sigma) f_{Z}(x / \sigma): \sigma>0\right\} \quad \text { [loc. parameter }=0 \text {] } \\
& \left\{f_{X}(x ; \mu)=f_{Z}(x-\mu): \mu \in \mathbb{R}\right\} \text { [sd. parameter }=1 \text {] }
\end{aligned}
$$

are the scale family and the location family, respectively, with standard pdf f_{Z}

Theorem (Standardizing a location-scale random variable)
For any pdf f and $\mu \in \mathbb{R}, \sigma>0$, we have
(1) X has pdf given by $\frac{1}{\sigma}(t)\left(\frac{x-\mu}{\sigma}\right)=\frac{x-\mu}{\sigma}$ has pdf given by $f(z)$.
(2) Z has pdf given by $f(z) \Longrightarrow X=\sigma Z+\mu$ has pdf given by $\frac{1}{\sigma} f\left(\frac{x-\mu}{\sigma}\right)$.

Exercise: Prove the result.
(2) $x \sim f_{x}(x ; \mu, \sigma)=\frac{1}{\sigma} f\left(\frac{x-\mu}{\sigma}\right)$

Lt $z=\frac{x-\mu}{\sigma}$. Find pdf of z :

$$
\begin{aligned}
z & =\frac{x-\mu}{\sigma}=\delta(x) \quad \Leftrightarrow \quad \begin{aligned}
& x=\sigma z+\mu=\gamma^{-1}(z) \\
& \frac{d}{d z} \delta^{-1}(z)=\sigma
\end{aligned} \\
f_{z}(z) & =\underbrace{f_{x}\left(\gamma^{-1}(z)\right)}\left|\frac{d}{d z} \delta^{-j}(z)\right| \\
& \left.=\left.\frac{1}{\sigma} f\left(\frac{(\sigma z+\mu)-\mu}{\sigma}\right)\right|_{\sigma} \right\rvert\, \\
& =f(z) .
\end{aligned}
$$

Exercises:
(1) Show that the collection of pdfs

$$
\left\{f_{X}(x ; a, b)=\frac{1}{b-a} \cdot \mathbf{1}(a<x<b):-\infty<a<b<\infty\right\}
$$

is a location scale family. Mean identify stended $p d f f_{z}$, also μ, σ.
(2) Let $Z \sim$ Exponential (1). Find pdf of $X=\lambda Z+\mu$ for $\lambda>0, \mu \in \mathbb{R}$.

$$
f_{z}(z)=e^{-z}
$$

$$
f_{x}(x)=\frac{1}{\lambda} e^{-\frac{(x-\mu)}{\lambda}} \mathbb{I}(x>\mu)
$$

$$
\begin{aligned}
& z=\frac{x-a}{b-a}=\delta(x)<0 \quad x=(b-a) z+a=g^{-1}(z) \\
& \frac{d}{d z} f^{\prime}(z)=b-a \\
& \left.f_{z}(z)=\left.f_{x}\left(\delta^{-1}(z)\right)\right|_{d z} ^{d} \delta^{-1}(z)\left|=\frac{1}{b-a} \mathbb{I}\left(a<\delta^{-1}(z)-b\right) \cdot\right| b-a \right\rvert\, \\
& =\frac{1}{b-a} \mathbb{P}(b<(b-a) z+0<b)|b-N| \\
& =1(0<(b-a) z<b-a) \\
& =\mathbb{Z}(0<z<1)
\end{aligned}
$$

8. ant $f_{z}(z)=\mathbb{1}(0<z<1)$,

$$
\mu=a \quad, \sigma=b-a .
$$

Then

$$
f_{x}(x ; a, b)=\frac{1}{b-n} \mathbb{Z}(a<x<b)=
$$

$$
\begin{aligned}
& =\frac{1}{b-a} \mathbb{R}\left(0<\frac{x-a}{b-a}<b\right) \\
& =\frac{1}{b-n} \int_{z}\left(\frac{x-a}{b-a}\right) \\
& U_{n i P}(0,1) p d f .
\end{aligned}
$$

