# STAT 712 fa 2022 Lec 9 slides <br> Conditional distributions, independence 

Karl B. Gregory<br>University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture, definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.
(1) Conditional pmfs and pdfs

$$
P(X=x \mid y=y)=\frac{P\left(\left\{X=x^{2} \cap\{y=y\}\right)\right.}{P(y=y)}=\frac{p(x, y)}{P_{y}(y)}
$$

Conditional probability mass functions
Let $(X, Y)$ be discrete rvs with joint mf $p$ and marginal pmfs $p_{X}$ and $p_{Y}$.

- For any $y$ such that $p_{Y}(y)>0$, the conditional mf of $X \mid Y=y$ is

$$
p(x \mid y)=\frac{p(x, y)}{p_{Y}(y)}, \quad x \in \mathbb{R}
$$

- Likewise the conditional mf of $Y \mid X=x$.

$$
p(y \mid x)=\frac{p(x, y)}{p_{x}(x)}
$$

Exercise: Show that $p(x \mid y)$ is a valid mf.
$\otimes$
(c) $p(x \mid y) \geqslant 0$
(ii) $\sum_{x \in X} p(x / y)=1$

$$
\sum_{x \in X} p(x \mid y)=\sum_{x \in X} \frac{p(x, y)}{p_{y}(y)}=\frac{p_{y}(y)}{p_{y}(y)}=1
$$

Let $X=$ sum of two dice rolls, $Y=\max$.


Exercise: Tabulate $p(x \mid y=4)$ and $p(y \mid x=7)$.


| $x$ | $s$ | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: |
| $p(x \mid y=4)$ | $\frac{p(x=5, y=4)}{p(y-4)}$ | $\frac{2}{7}$ | $\frac{2}{7}$ | $\frac{1}{7}$ |
| $\frac{213}{7 / 36}$ |  |  |  |  |
|  | $\frac{2}{7}$ |  |  |  |

## Conditional probability density functions

Let $(X, Y)$ be continuous rvs with joint pdf $f$ and marginal pdfs $f_{X}$ and $f_{Y}$.

- For any $y$ such that $f_{Y}(y)>0$, the conditional pdf of $X \mid Y=y$ is

- Likewise the conditional pdf of $Y \mid X=x$.

Exercise: Show that $f(x \mid y)$ is a valid pdf.
*
(i) $f(x \mid y) \geqslant 0$
(ii) $\int_{\mathbb{R}} f(x \mid y) d x=1 \leftharpoonup$

$$
\int_{\mathbb{R}} f(x \mid y) d x=\int_{H} \frac{f(x, y)}{f_{y}(y)} d x=\frac{f_{y}(y)}{f_{y}(y)}=1
$$

Exercise: Let $(X, Y) \sim f(x, y)=y(1-x)^{y-1} e^{-y} \mathbf{1}(0<x<1,0<y<\infty)$.
(1) Find the pdf $f(x \mid y)$ of $X$ given $Y=y$.
(2) Find $P(X<1 / 2 \mid Y=2)$.
(4) $f(x \mid y)=\frac{f(x, y)}{f_{y}(y)}$
(1)

Nend $f_{y}(y)=\int_{R} f(x, y) d x=$

$$
=\int_{0}^{1} y(1-x)^{y-1} e^{-y} d y
$$

$$
\begin{aligned}
(\Gamma(\alpha+1)=\alpha \Gamma(\alpha)) & =y e^{-y} \underbrace{\int_{0}^{1} x^{1-1}(1-x)^{y-1} d x}_{\text {Bet. }(1, y} \\
& =\frac{\Gamma(1) \Gamma(y)}{\Gamma(1+y)} y e^{-y} \\
& =\frac{1 \cdot \Gamma(y)}{y \Gamma(y)} y e^{-y} \\
& =e^{-y} .
\end{aligned}
$$

For $\quad x \in(0,1)$ :

$$
\begin{aligned}
& f(x \mid y)=\frac{f(x, y)}{f_{y}(y)}=\frac{y(1-x)^{y-1} e^{-y}}{e^{-y}}=y(1-x)^{y-1} \\
& f(x \mid y)=\frac{\Gamma(y+1)}{\Gamma(y) \Gamma(1)} x^{1-1}(1-x)^{y-1} \mathbb{Z}(0<x<1) \\
& X \mid y=y \quad \sim \operatorname{Bet}(\alpha=1, \beta=y)
\end{aligned}
$$

(2)

$$
\begin{aligned}
P(x<1 / 2 \mid y=2) & =\int_{0}^{1 / 2} f(x \mid y=2) d x \\
& =\int_{0}^{1 / 2} 2(1-x)^{2-1} d x
\end{aligned}
$$

$$
\begin{aligned}
& =2 \int_{0}^{1 / 2}(1-x) d x \\
& =\left.2\left(x-\frac{x^{2}}{2}\right)\right|_{0} ^{4 / 2} \\
& =2\left(\frac{1}{2}-\frac{1}{8}\right) \\
& =\frac{3}{4}
\end{aligned}
$$

Contaon of
$f(x, y)$



Exercise: Let $(X, Y)$ have joint pdf given by

$$
f(x, y)=\frac{1}{2 \pi} x^{-3 / 2} \exp \left[-\frac{1}{2 x}\left(y^{2}+1\right)\right] \mathbf{1}(0<x<\infty,-\infty<y<\infty) .
$$

(1) Find the conditional pdf $f(y \mid x)$ of $Y$ given $X=x$.
(2) Find $P(Y>1 \mid X=4)$.



Exercise: Let $(U, V)$ be a pair of rvs with joint pdf given by

$$
f(u, v)=6(v-u) \mathbf{1}(0<u<v<1) .
$$

(1) Find the conditional pdf $f(u \mid v)$ of $U$ given $V=v$.
(2) Find $P(U<1 / 4 \mid V=1 / 2)$.

## (1) Conditional pmfs and pdfs

(2) Conditional expectation and variance

## (3) Independence of random variables

## Conditional expectation

Let $(X, Y)$ be discrete or continuous rvs on $\mathcal{X}$ and $\mathcal{Y}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$. For any $y \in \mathcal{Y}$, the conditional expectation of $g(X)$ given $Y=y$ is

$$
\mathbb{E}[g(X) \mid Y=y]= \begin{cases}\sum_{x \in \mathcal{X}} g(x) \cdot p(x \mid y) & \text { for }(X, Y) \text { discrete } \\ \int_{\mathbb{R}} g(x) \cdot f(x \mid y) & \text { for }(X, Y) \text { continuous }\end{cases}
$$

The conditional expectation $\mathbb{E}[g(Y) \mid X=x]$ is likewise defined.

Note that $\mathbb{E}\left[g(X) \left\lvert\, Y=\left(\begin{array}{l}\text { ) }\end{array}\right.\right.$ is a function of $y$, since $X$ is summed/integrated out. \right.
We often have $g(x)=x$, so that we consider $\mathbb{E}[X \mid Y=y]$.

## $\leftarrow$ a function of $Y$.

If we write $\mathbb{E}[X \mid Y]$, without specifying a value $y$ for $Y$, then $\mathbb{E}[X \mid Y]$ is a rv.

Exercise: Let $(X, Y) \sim f(x, y)=y(1-x)^{y-1} e^{-y} \mathbf{1}(0<x<1,0<y<\infty)$.
(1) Find $\mathbb{E}[X \mid Y]$.
(2) Find $\mathbb{E}[X \mid Y=2]$.
(*)
(2)

$$
\begin{aligned}
\mathbb{E}[x \mid y=y] & =\int_{0}^{1} x \cdot y(1-x)^{y-1} d x \\
& \vdots \quad \text { (2) } \mathbb{I}[x \\
& =\frac{1}{1+y} \\
\mathbb{E}[x \mid y] & =\frac{1}{1+y}<\text { random varable }
\end{aligned}
$$

(2) 在 $[x \mid y=2]=\frac{1}{1+2}=\frac{1}{3}$

Exercise: Let $(U, V)$ be a pair of rvs with joint pdf given by

$$
f(u, v)=6(v-u) \mathbf{1}(0<u<v<1) .
$$

(1) Find $\mathbb{E}[U \mid V]$.
(c) Find $\mathbb{E}[U \mid V=1 / 2]$.

$$
\operatorname{Var} x=\mathbb{E}(x-\mathbb{E} x)^{2}=\mathbb{E} x^{2}-(\mathbb{E} x)^{2}
$$

## Conditional variance

The conditional variance of $X$ given that $Y=y$ is

$$
\operatorname{Var}[X \mid Y=y]=\mathbb{E}\left[(X-\mathbb{E}[X \mid Y=y])^{2} \mid Y=y\right] .
$$


Useful expression: $\operatorname{Var}[X \mid Y]=\mathbb{E}\left[X^{2} \mid Y\right]-(\mathbb{E}[X \mid Y])^{2}$


$$
\frac{\alpha \beta}{(\alpha+\beta)^{2}(\alpha+\beta+1)}
$$

Exercise: Let $(X, Y) \sim f(x, y)=y(1-x)^{y-1} e^{-y} \mathbf{1}(0<x<1,0<y<\infty)$.
(3) Find $\operatorname{Var}[X \mid Y]$.
$x \mid y \sim \operatorname{Bet}(1, y)$
(2) Find $\operatorname{Var}[X \mid Y=2]$.
*

$$
\begin{aligned}
& \operatorname{Var}[x \mid y]=\frac{y}{(1+y)^{2}(1+4+1)} \\
& \operatorname{Var}[x \mid y=2]=\frac{2}{(1+2)^{2}(1+2+1)}=\frac{2}{9 \cdot 4}=\frac{1}{18} .
\end{aligned}
$$

Exercise: Let $(X, Y)$ have joint pdf given by

$$
f(x, y)=\frac{1}{2 \pi} x^{-3 / 2} \exp \left[-\frac{1}{2 x}\left(y^{2}+1\right)\right] \mathbf{1}(0<x<\infty,-\infty<y<\infty) .
$$

(1) Find $\mathbb{E}[Y \mid X]$.
(2) Find $\operatorname{Var}[Y \mid X]$.
(3) Find $\operatorname{Var}[Y \mid X=2]$.
(1) Conditional pmfs and pdfs
(2) Conditional expectation and variance
(3) Independence of random variables

Eveats $A, B$ indep meons

$$
\begin{aligned}
& P(A \cap B)=P(A) P(B) \\
& P(A \mid B)=P(A) \\
& P(B \mid A)=P(B)
\end{aligned}
$$

On $(\Omega, \mathcal{B}, P)$, independence of events $A, B \in \mathcal{B}$ is the property that

$$
P(A \cap B)=P(A) P(B)
$$

Independence of random variables
Two rvs $X$ and $Y$ are independent if

$$
P(X \in A, Y \in B)=P(X \in A) P(Y \in B) \quad \text { for all } A, B \in \mathcal{B}(\mathbb{R}) .
$$

We sometimes write $X \Perp Y$ to express that $X$ and $Y$ are independent.
Basically: If all pairs of events concerning $X$ and $Y$ are independent, then $X \Perp Y$.


Theorem (Independence of joint is product of marginals)

- If $(X, Y)$ discrete with joint mf $p$ and marginal $p m f s p_{X}$ and $p_{Y}$, then

$$
\begin{aligned}
& X \Perp Y \\
& \Longleftrightarrow p(x, y)=p_{X}(x) p_{Y}(y) \\
& \text { for all } \quad(x, y) \in \mathbb{R}^{2} \text {. }
\end{aligned}
$$

- If $(X, Y)$ continuous with joint pdf $f$ and marginal pdfs $f_{X}$ and $f_{Y}$, then

$$
X \Perp Y \quad \Longleftrightarrow \quad f(x, y)=f_{X}(x) f_{Y}(y) \quad \text { for all } \quad(x, y) \in \mathbb{R}^{2}
$$

Check independence by checking whether the joint is the product of the marginals.

Exercise: Suppose there are six chairs in a circle numbered $1, \ldots, 6$. Then:
(1) Let $X$ be the roll of a die and sit in chair $X$.
(2) Roll die again and move that many chairs clockwise.
(3) Let $Y$ be the number of the chair in which you now sit.

Are $X$ and $Y$ independent?

Exercise: Let $X$ and $Y$ be independent rvs with marginal pmfs given by

$$
\begin{aligned}
& p_{x}(x)=p^{x}(1-p)^{1-x} \cdot \mathbf{1}(x \in\{0,1\}) \\
& p_{Y}(y)=\binom{3}{y} \eta^{y}(1-\eta)^{3-y} \cdot \mathbf{1}(y \in\{0,1,2,3\})
\end{aligned}
$$

Give the joint mf of the rv pair $(X, Y)$.
(\$) $p(x, y)=p^{x}(1-p)^{1-x}\binom{z}{y} \eta^{y}(1-\eta)^{3-y} \geq(x \in\{0,3) \mathbb{L}(y \in\{0,1,2,3))$

Exercise: Let $(X, Y)$ be a pair of rvs with joint pdf given by

$$
f(x, y)=\frac{6}{5}\left[1-(x-y)^{2}\right] \cdot 1(0<x<1,0<y<1) .
$$

Check whether $X$ and $Y$ are independent.
$\$$

$$
\begin{aligned}
f_{x}(x) & =\int_{0}^{1} \frac{6}{5}\left(1-\left(x^{2}-2 x y+y^{2}\right)\right) d y \\
& =\frac{6}{5} \int_{0}^{2}\left(1-x^{2}+2 x y-y^{2}\right) d y \\
& =\left.\frac{6}{5}\left[y-y x^{2}+x y^{2}-\frac{y^{3}}{3}\right]\right|_{0} ^{1}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{6}{5}\left[1-x^{2}+x-\frac{1}{3}\right] \quad \text { for } \quad x \in(0,1) . \\
f_{y}(y) & =\frac{6}{5}\left[1-y^{2}+y-\frac{1}{3}\right] \quad \text { fo } \quad y \in(0,1)
\end{aligned}
$$

We han

$$
f(x, y) \neq f_{x}(x) f_{y}(y)
$$

so $x \not y y$.

$$
\begin{aligned}
& f_{x_{1}}\left(x_{1}\right)=e^{-x_{1}} \mathbb{Z}\left(x_{1}>0\right) \\
& f_{x_{2}}\left(x_{2}\right)=e^{-x_{2}} \mathbb{1}\left(x_{2}=0\right)
\end{aligned}
$$

Exercise: Let $X_{1}$ and $X_{2}$ be independent rvs with the Exponential (1) distribution.
(1) Give the joint pdf of $\left(X_{1}, X_{2}\right)$
(2) Find $P\left(X_{2}<X_{1}<2 X_{2}\right)$...
(\$) (1) $f\left(x_{1}, x_{2}\right)=e^{e^{-x_{1}-x_{2}} \underbrace{\mathbb{1}\left(x_{1}>0\right) \cdot \mathbb{1}\left(x_{2}>0\right)}_{\mathbb{1}\left(x_{1}>0, x_{2}>0\right)}}$
(2) $p\left(x_{2}<x_{1}<2 x_{2}\right)=\int_{0}^{\infty} \int_{x_{2}}^{2 x_{2}} e^{-x_{1}-x_{2}} d x_{1} d x_{2}=\cdots$


$$
\begin{aligned}
& p(x, y)=p_{x}(x) p_{y}(y) \\
& f(x, y)=f_{x}(x) f_{y}(y)
\end{aligned}
$$

Theorem (Easier independence check)
Let $(X, Y)$ be discrete or continuous rvs with joint imf $p$ or joint $p d f f$.
Then $X \Perp Y \Longleftrightarrow$ there exist functions $g$ and $h$ such that

$$
\begin{array}{lll}
p(x, y)=g(x) h(y) & \text { for all }(x, y) \in \mathbb{R}^{2} & \text { or } \\
f(x, y)=g(x) h(y) & \text { for all }(x, y) \in \mathbb{R}^{2}, & \text { respectively. }
\end{array}
$$

Check if the joint is the product of a function of just $x$ and a function of just $y$.

Exercise: Let $(X, Y)$ have the joint pdf

$$
f(x, y)=18 x y(y-x y) \cdot \mathbf{1}(0<x<1,0<y<1) .
$$

Check whether $X$ and $Y$ are independent.
$\$$

ho $\quad X \Perp Y$.

$$
\frac{6}{5}\left[1-x^{2}+2 x y-y^{2}\right]
$$

Exercise: Let $(X, Y)$ be a pair ff rvs with joint pdf given by

$$
f(x, y)=\frac{6}{5}\left[1-(x-y)^{2}\right] \cdot \mathbf{1}(0<x<1,0<y<1) .
$$

Check whether $X$ and $Y$ are independent.
*
Ca $I$ find $\delta(x), h(y)$ s.t.

$$
\begin{aligned}
& f(x, y)=\delta(x) \cdot h(y) ? \\
& N_{0}, \gg x y .
\end{aligned}
$$

Exercise: Let $(X, Y)$ be a pair of rvs with joint pdf given by

$$
f(x, y)=\frac{1}{8}(x+y) \cdot \mathbf{1}(0<x<2,0<y<2) .
$$

Check whether $X$ and $Y$ are independent.

cannot factorize
NO.

Exercise: Let $(X, Y)$ have the joint pdf

$$
f(x, y)=\frac{1}{4 \pi} \exp \left[-\frac{x^{2}+y^{2}-2 x+1}{4}\right] \quad \text { for all } x, y \in \mathbb{R}
$$

Check whether $X$ and $Y$ are independent.



$$
P(A \cap B)=P(A) P(D)
$$

$A, B \operatorname{ind} \Leftrightarrow$

$$
\begin{array}{lll}
A \cap B)=P(A) P(D) & & f(x, y)=f_{x}(x) f_{i}(y) \\
P(A \mid P)=P(A) & x \Perp y \ll> \\
P(B \mid A)=P(D) & & f(x \mid y)=f_{x}(x) \\
f(y \mid x)=f_{y}(y)
\end{array}
$$

Exercise: Let $(X, Y)$ be a pair of rvs with joint pdf given by

$$
f(x, y)=y(1-x)^{y-1} e^{-y} \mathbf{1}(0<x<1,0<y<\infty)
$$

Check whether $X$ and $Y$ are independent.
*
No factorization. $X \nmid Y$.

Exercise: Let $(X, Y)$ be a pair of rvs with joint pdf given by

$$
f(x, y)=\frac{1}{2 \pi} x^{-3 / 2} \exp \left[-\frac{1}{2 x}\left(y^{2}+1\right)\right] \mathbf{1}(0<x<\infty,-\infty<y<\infty)
$$

Check whether $X$ and $Y$ are independent.

Exercise: Let $(X, Y)$ be a pair of rvs with joint pdf given by

$$
f(x, y)=4 x y \cdot \mathbf{1}(0<x<1,0<y<1) .
$$

Check whether $X$ and $Y$ are independent.

Exercise: Let $(U, V)$ be a pair of rvs with joint pdf given by

$$
f(u, v)=6(v-u) 1(0<u<v<1) \text {. }
$$

Check whether $U$ and $V$ are independent.
*


Theorem (Expectation of the product of independent rvs)
Let $X$ and $Y$ be independent rvs. Then


Moreover, for any functions $g: \mathbb{R} \rightarrow \mathbb{R}$ and $h: \mathbb{R} \rightarrow \mathbb{R}$,

$$
\mathbb{E} g(X) h(Y)=\mathbb{E} g(X) \mathbb{E} h(Y)
$$

Exercise: Prove the result.

Let $x \Perp y \quad(x, y) \sim f(x, y)$ with $x \sim f_{x}, y \sim f_{y}$.
The

$$
\begin{aligned}
\mathbb{E} f(x) h(y) & =\int_{\mathbb{R}} \int_{\mathbb{R}} \delta(x) h(y) \underbrace{f(x, y) d x d y}_{f_{x}(x) f_{y}(y)} \\
& =\int_{\mathbb{R}} \int_{\mathbb{R}} \delta(x) h(y) f_{x}(x) f_{y}(y) d x d y \\
& =\underbrace{\int_{\mathbb{R}} \delta(x) f_{x}(x) d x} \underbrace{\int_{\delta} h(y) f_{y}(y) d y}_{\mathbb{R}} \mathbb{E} h(y)
\end{aligned}
$$

Exercise: Let $X$ and $Y$ be independent rvs with marginal pdfs

$$
\begin{aligned}
& f_{X}(x)=2 e^{-2 x} \mathbf{1}(x>0) \\
& f_{Y}(y)=e^{-2|y|} \mathbf{1}(-\infty<y<\infty)
\end{aligned}
$$

Find $\mathbb{E} X Y^{2}$.


$$
\text { (ii) } \mathbb{E X} X y^{2}=\mathbb{E} X \mathbb{E} y^{2}=\int_{0}^{\infty} 2 e^{-2 x} d x \cdot \int_{-\infty}^{\infty} y^{2} e^{-2|y|} d y
$$

$\operatorname{Bet}(\alpha, \beta)$ hat mean $\frac{\alpha}{\alpha+\beta}$
Exercise: Let $X$ and $Y$ be independent rvs such that

$$
\begin{aligned}
& X \sim \operatorname{Beta}(3,4) \\
& Y \sim \operatorname{Beta}(1,2)
\end{aligned}
$$

Find $\mathbb{E}[X Y]$.
*

$$
\mathbb{E} x^{y}=\mathbb{E} x \cdot \mathbb{E} 1=\frac{3}{3+y} \cdot \frac{1}{1+2}
$$

Theorem (mgf of a sum of independent random variables) If $X$ and $Y$ are indep. rvs with mgfs $M_{X}$ and $M_{Y}$, the mgf of $V=X+Y$ is

$$
M_{V}(t)=\underline{M_{X}(t) M_{Y}(t)}
$$

for all $t$ at which $M_{X}(t)$ and $M_{Y}(t)$ are defined.

Exercise: Prove the result.
(*)

$$
\begin{aligned}
M_{V}(t)=M_{X+Y}(t)=\mathbb{E} e^{t(x+y)} & =\mathbb{E}\left[e^{t x} e^{t y}\right] \\
& =\mathbb{E} e^{t x} \mathbb{E} e^{\forall y}=M_{x}(t) M_{Y}^{(t)}
\end{aligned}
$$

Exercise: Let $X$ and $Y$ be independent rvs such that

$$
\begin{aligned}
& X \sim \operatorname{Binomial}(n, p) \\
& Y \sim \operatorname{Binomial}(m, p)
\end{aligned}
$$

Find the distribution of $U=X+Y \sim \operatorname{Bin} \cdot m(n+m, p)$
$\$$

$$
\begin{aligned}
& M_{X}(t)=\left[p e^{t}+(1-p)\right]^{n} \\
& M_{Y}(t)=\left[p e^{t}+(1-p)\right]^{m} \\
& M_{U}(t)=M_{X}(t) M_{Y}(t)=\left[p e^{t}+(1-p)\right]^{n+m}(n+m, p)
\end{aligned}
$$

Exercise: Let $X$ and $Y$ be independent rvs such that

$$
\begin{aligned}
& X \sim \operatorname{Normal}\left(\mu_{X}, \sigma_{X}^{2}\right) \\
& Y \sim \operatorname{Normal}\left(\mu_{Y}, \sigma_{Y}^{2}\right)
\end{aligned}
$$

Find the distribution of $U=X+Y . \sim N\left(\mu_{x}+\mu_{y}, \sigma_{x}^{2}+\sigma_{y}^{2}\right)$

Exercise: Let $X_{1}$ and $X_{2}$ be independent rvs such that

$$
\begin{aligned}
& X_{1} \sim \operatorname{Poisson}\left(\lambda_{1}\right) \\
& X_{2} \sim \operatorname{Poisson}\left(\lambda_{2}\right)
\end{aligned}
$$

Find the distribution of $Y=x_{1}+X_{2}$. $\sim P_{\text {oisson }}\left(\lambda_{1}+\lambda_{2}\right)$

