STAT 712 fa 2022 Lec 10 slides

Transformations of multiple random variables

Karl B. Gregory
University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture, definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.
(1) Bivariate transformations
(2) Multivariate transformations, including non-1:1
(3) Sums of independent random variables

We often wish to find the distribution of a function of two (or more) rvs:
Exercise: Let X_{1} and X_{2} be indep. Exponential (λ) rvs. Let $Y=X_{1} /\left(X_{1}+X_{2}\right)$.
(1) Find the cdf of Y.
(2) Find the pdf of Y.

Theorem (Bivariate transformation method)

Let $\left(X_{1}, X_{2}\right)$ be a pair of cont. rvs with joint pdf $f_{X_{1}, X_{2}}$ on \mathcal{X} and

$$
Y_{1}=g_{1}\left(X_{1}, X_{2}\right) \quad \text { and } \quad Y_{2}=g_{2}\left(X_{1}, X_{2}\right),
$$

where g_{1} and g_{2} define a 1:1 transformation of \mathcal{X} onto \mathcal{Y} (define these).
Let g_{1}^{-1} and g_{2}^{-1} be the functions satisfying

$$
\begin{aligned}
& y_{1}=g_{1}\left(x_{1}, x_{2}\right) \\
& y_{2}=g_{2}\left(x_{1}, x_{2}\right)
\end{aligned} \Longleftrightarrow \begin{aligned}
& x_{1}=g_{1}^{-1}\left(y_{1}, y_{2}\right) \\
& x_{2}=g_{2}^{-1}\left(y_{1}, y_{2}\right)
\end{aligned}
$$

for all $\left(x_{1}, x_{2}\right) \in \mathcal{X}$ and $\left(y_{1}, y_{2}\right) \in \mathcal{Y}$.
Then the joint pdf of $\left(Y_{1}, Y_{2}\right)$ is given by

$$
f_{Y_{1}, Y_{2}}\left(y_{1}, y_{2}\right)=f_{X_{1}, x_{2}}\left(g_{1}^{-1}\left(y_{1}, y_{2}\right), g_{2}^{-1}\left(y_{1}, y_{2}\right)\right)\left|J\left(y_{1}, y_{2}\right)\right|, \quad \text { for }\left(y_{1}, y_{2}\right) \in \mathcal{Y} \text {, }
$$

where $J\left(y_{1}, y_{2}\right)$ is the Jacobian (next slide), if $J\left(y_{1}, y_{2}\right)$ is not always 0 on \mathcal{Y}.

Jacobian

In the setup of the previous slide, the Jacobian of the transformation is defined as

$$
J\left(y_{1}, y_{2}\right)=\left|\begin{array}{ll}
\frac{\partial}{\partial y_{1}} g_{1}^{-1}\left(y_{1}, y_{2}\right) & \frac{\partial}{\partial y_{2}} g_{1}^{-1}\left(y_{1}, y_{2}\right) \\
\frac{\partial}{\partial y_{1}} g_{2}^{-1}\left(y_{1}, y_{2}\right) & \frac{\partial}{\partial y_{2}} g_{2}^{-1}\left(y_{1}, y_{2}\right)
\end{array}\right| .
$$

For real numbers a, b, c, d,

$$
\left|\begin{array}{ll}
a & b \\
c & d
\end{array}\right|=a d-b c
$$

This is called the determinant.

Exercise: Let X_{1}, X_{2} be independent $\operatorname{Normal}(0,1)$ rvs.
(1) Find the joint pdf of $Y_{1}=X_{1} / X_{2}$ and $Y_{2}=X_{2}$.
(c) Find the marginal pdf of Y_{1}.

Exercise: Let X_{1}, X_{2} have joint pdf

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\frac{1}{\lambda^{2}} \exp \left[-\frac{x_{1}+x_{2}}{\lambda}\right] \mathbf{1}\left(x_{1}>0, x_{2}>0\right) .
$$

(1) Find the joint pdf of $Y_{1}=X_{1} /\left(X_{1}+X_{2}\right)$ and $Y_{2}=X_{1}+X_{2}$.
(2) Find the marginal pdf of Y_{1}.

Exercise: Let $X_{1} \sim \operatorname{Beta}(1,1)$ and $X_{2} \sim \operatorname{Beta}(2,1)$ be independent rvs.
(1) Find the joint pdf of $Y_{1}=X_{1} X_{2}$ and $Y_{2}=X_{2}$.
(c) Find the marginal pdf of Y_{1}.

Exercise: Let Z_{1}, Z_{2} have the bivariate Normal distribution, with joint pdf

$$
f_{Z_{1}, Z_{2}}\left(z_{1}, z_{2}\right)=\frac{1}{2 \pi} \frac{1}{\sqrt{1-\rho^{2}}} \exp \left[-\frac{1}{2} \frac{z_{1}^{2}-2 \rho z_{1} z_{2}+z_{2}^{2}}{1-\rho^{2}}\right] .
$$

(1) Find the joint pdf of $U_{1}=Z_{1}+Z_{2}$ and $U_{2}=Z_{1}-Z_{2}$.
(2) Find the marginal pdfs of U_{1} and U_{2}.

Exercise: Let Z_{1}, Z_{2} have the bivariate Normal distribution, with joint pdf

$$
f_{z_{1}, Z_{2}}\left(z_{1}, z_{2}\right)=\frac{1}{2 \pi} \frac{1}{\sqrt{1-\rho^{2}}} \exp \left[-\frac{1}{2} \frac{z_{1}^{2}-2 \rho z_{1} z_{2}+z_{2}^{2}}{1-\rho^{2}}\right] .
$$

(1) Find the joint pdf of $U_{1}=\min \left\{Z_{1}, Z_{2}\right\}$ and $U_{2}=\max \left\{Z_{1}, Z_{2}\right\}$? (Not 1:1).
(2) Find the marginal pdf of U_{2} (work on this at home).

(1) Bivariate transformations

(2) Multivariate transformations, including non-1:1

Now consider how $d \geq 1$ random variables behave together.
It is often convenient to organize our random variables into a random vector:

Random vector

A random vector is a vector in which each entry is a random variable.

Multivariate pdf/pmf

The joint pdf of $\mathbf{X}=\left(X_{1}, \ldots, X_{d}\right)^{T}$ is the function $f: \mathbb{R}^{d} \rightarrow[0, \infty)$ such that

$$
P(\mathbf{X} \in A)=\int_{A} f(\mathbf{x}) d \mathbf{x} \quad \text { for all } A \in \mathcal{B}\left(\mathbb{R}^{d}\right) .
$$

If X_{1}, \ldots, X_{d} are discrete, then the joint pmf of \mathbf{X} is given by

$$
p(\mathbf{x})=P(\mathbf{X}=\mathbf{x}) \quad \text { for all } \mathbf{x} \in \mathbb{R}^{d} .
$$

Multivariate transformation

Let $\mathbf{X} \in \mathbb{R}^{d}$ have joint pdf f with support \mathcal{A}. Consider the rvec

$$
\mathbf{Y}=\left(g_{1}(\mathbf{X}), \ldots, g_{d}(\mathbf{X})\right)^{T}
$$

for some functions $g_{1}, \ldots, g_{d}: \mathbb{R}^{d} \rightarrow \mathbb{R}$.
Moreover, given a partition $\mathcal{A}_{0}, \mathcal{A}_{1}, \ldots, \mathcal{A}_{m}$ of \mathcal{A}, where $P\left(\mathbf{X} \in \mathcal{A}_{0}\right)=0$, suppose the transformation is $1: 1$ on each of the sets $\mathcal{A}_{1}, \ldots, \mathcal{A}_{m}$.

For $k=1, \ldots, m$, let the inverse transformation on \mathcal{A}_{k} be given by

$$
\mathbf{x}=\left(g_{1 k}^{-1}(\mathbf{y}), \ldots, g_{d k}^{-1}(\mathbf{y})\right)
$$

for some functions $g_{1 k}^{-1}, \ldots, g_{d k}^{-1}$ and let $\mathbf{J}_{k}(\mathbf{y})$ be the corresponding Jacobian.
Then the joint pdf of \mathbf{Y} is given by

$$
f_{\mathbf{Y}}(\mathbf{y})=\sum_{k=1}^{m} f\left(\left(g_{1 k}^{-1}(\mathbf{y}), \ldots, g_{d k}^{-1}(\mathbf{y})\right)^{T}\right)\left|\mathbf{J}_{k}(\mathbf{y})\right| .
$$

Exercise: Let $Z_{1}, Z_{2} \stackrel{\text { ind }}{\sim} \operatorname{Normal}(0,1)$ and consider the rvs

$$
\begin{aligned}
& Y_{1}=Z_{1}^{2}+Z_{2}^{2} \\
& Y_{2}=Z_{1} / \sqrt{Z_{1}^{2}+Z_{2}^{2}}
\end{aligned}
$$

(1) Find the joint pdf of $\left(Y_{1}, Y_{2}\right)$.
(2) Check whether Y_{1} and Y_{2} are independent.
(3) Find the marginal pdf of Y_{2}.

Exercise: Let $X_{1}, X_{2}, X_{3} \stackrel{\text { ind }}{\sim}$ Exponential (1) and consider

$$
\begin{aligned}
Y_{1} & =\frac{X_{1}}{X_{1}+X_{2}} \\
Y_{2} & =\frac{X_{1}+X_{2}}{X_{1}+X_{2}+X_{3}} \\
Y_{3} & =X_{1}+X_{2}+X_{3} .
\end{aligned}
$$

(1) Find the joint pdf of $\left(Y_{1}, Y_{2}, Y_{3}\right)$.
(2) Check whether Y_{1}, Y_{2}, and Y_{3} are mutually independent.
(3) Find the marginal distributions Y_{1}, Y_{2}, and Y_{3}.

(1) Bivariate transformations

(2) Multivariate transformations, including non-1:1
(3) Sums of independent random variables

We extend our definition of independence to a collection of more than two rvs.

Mutual independence for a collection of rvs

Let the rvs X_{1}, \ldots, X_{d} have joint pdf/pmf $f\left(x_{1}, \ldots, x_{d}\right)$ and marginal pdfs/pmfs such that $X_{i} \sim f_{X_{i}}, i=1, \ldots, d$. If

$$
f\left(x_{1}, \ldots, x_{d}\right)=\prod_{j=1}^{d} f_{x_{j}}\left(x_{j}\right) \quad \text { for all }\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}
$$

we say that X_{1}, \ldots, X_{d} are mutually independent rvs.

Theorem (Quick check for mutual independence)
The rvs X_{1}, \ldots, X_{d} with joint pdf/pmf f are mutually independent if and only if there exist functions g_{1}, \ldots, g_{d} such that

$$
f\left(x_{1}, \ldots, x_{d}\right)=\prod_{j=1}^{d} g_{j}\left(x_{j}\right) \quad \text { for all } \quad\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{R}^{d}
$$

Theorem (Expectation of a product of functions)
If X_{1}, \ldots, X_{n} are mutually independent, then

$$
\mathbb{E}\left(g_{1}\left(X_{1}\right) \cdots \cdot g_{n}\left(X_{n}\right)\right)=\prod_{i=1}^{n} \mathbb{E} g_{i}\left(X_{i}\right)
$$

for any functions $g_{1}, \ldots, g_{n}: \mathbb{R} \rightarrow \mathbb{R}$.

Exercise: Prove the above.

Theorem (mgf method for sums of independent rvs)

Let X_{1}, \ldots, X_{n} be independent rvs with mgfs $M_{X_{1}}, \ldots, M_{X_{n}}$, respectively. Then the $m g f$ of $Y=X_{1}+\cdots+X_{n}$ is given by

$$
M_{Y}(t)=\prod_{i=1}^{n} M_{X_{i}}(t)
$$

Moreover, if X_{1}, \ldots, X_{n} iid with $m g M_{X}$ then $M_{Y}(t)=\left[M_{X}(t)\right]^{n}$.

Exercise: Prove the above.

Exercise: Let X_{1}, \ldots, X_{n} be ind. chi-squared rvs with dfs ν_{1}, \ldots, ν_{n}, resp. Find the distribution of $Y=X_{1}+\cdots+X_{n}$.

Exercise: Let X_{1}, \ldots, X_{n} be ind. Normal rvs with means μ_{1}, \ldots, μ_{n} and variances $\sigma_{1}^{2}, \ldots, \sigma_{n}^{2}$, resp.
(1) Find the distribution of $Y=X_{1}+\cdots+X_{n}$.
(2) Find the distribution of $V=a_{1} X_{1}+\cdots+a_{n} X_{n}$, for $a_{1}, \ldots, a_{n} \in \mathbb{R}$.
(3) Find the distribution of $\bar{X}_{n}=\left(X_{1}+\cdots+X_{n}\right) / n$.

