
STAT 712 fa 2022 Lec 11 slides

Sundry bivariate nuggets, some inequalities, hierarchical
models

Karl B. Gregory

University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture,
definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.
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Covariance and correlation

Covariance
The covariance between two rvs X and Y is defined as

Cov(X ,Y ) = E(X − µX )(Y − µY ) =: σXY ,

where µX = EX and µY = EY .

Useful expression: Cov(X ,Y ) = EXY − EXEY

Exercise: Derive the useful expression for computing covariances.
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Covariance and correlation

Correlation
The correlation between two rvs X and Y is defined as

corr(X ,Y ) =
Cov(X ,Y )√
VarX

√
VarY

=
σXY
σXσY

=: ρXY ,

where σX =
√

VarX and σY =
√

VarY .

Theorem (Correlation between minus 1 and 1, cf. Thm 4.5.7 in CB)
For any rvs X and Y ,

1 −1 ≤ corr(X ,Y ) ≤ 1
2 corr(X ,Y ) = ±1 iff there exist a 6= 0 and b such that P(Y = aX + b) = 1.

We will prove the first part of this result later.
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Covariance and correlation

Exercise: Let (X ,Y ) be a pair of rvs with joint pdf given by

f (x , y) =
1
8

(x + y) · 1(0 < x < 2, 0 < y < 2).

1 Find Cov(X ,Y ).
2 Find corr(X ,Y ).
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Covariance and correlation

Covariance and correlation of linearly transformed rvs
For any two rvs X and Y and constants a, b, c , d ∈ R, we have

Cov(aX + b, cY + d) = ac · Cov(X ,Y )

corr(aX + b, cY + d) = sign(ac) · corr(X ,Y ).

Exercise: Prove the result.
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Covariance and correlation

Theorem (independence implies covariance equal to zero)
If X and Y are independent then Cov(X ,Y ) = 0.

If Cov(X ,Y ) = 0, it does not mean that X and Y are independent!

Exercise: Let (X ,Y ) be a pair of rvs with joint pdf given by

f (x , y) =
1

2|x |
e−y/|x|1(x ∈ (−1, 1) \ {0}, y > 0).

1 Check whether X and Y are independent.
2 Compute Cov(X ,Y ).
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Covariance and correlation
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Covariance and correlation

Theorem (Variance/Covariance of linear combinations of rvs)
Let X1, . . . ,Xn and Y1, . . . ,Ym be rvs and let a1, . . . , an, b1, . . . , bm ∈ R. Then

1 Cov(
∑n

i=1 aiXi ,
∑m

j=1 bjYj) =
∑n

i=1
∑m

j=1 aibj Cov(Xi ,Yj).
2 Var

(∑n
i=1 aiXi

)
=
∑n

i=1 a
2
i Var(Xi ) + 2

∑
i<j aiaj Cov(Xi ,Xj).

Simple cases of the above are
1 Cov(aX + bY , cU + dV ) =

ac Cov(X ,U) + ad Cov(X ,V ) + ac Cov(Y ,U) + bd Cov(Y ,V ).
2 Var(aX + bY ) = a2 VarX + b2 VarY + 2ab Cov(X ,Y ).

Exercise: Prove the general results.
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Covariance and correlation

Exercise: Let Z1, . . . ,Zn have unit variance and suppose

corr(Zi ,Zj) = ρ ∈ (−1, 1) for i 6= j .

Find Var Z̄ , where Z̄ = n−1∑n
i=1 Zi .
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Covariance and correlation

Exercise: Let Y1, . . . ,Yn be independent rvs such that

Yi ∼ Normal(µ, σ2
i ), i = 1, . . . , n

and let

Ȳ =
1
n

n∑
i=1

Yi and Ỹ =

∑n
i=1 σ

−2
i Yi∑n

j=1 σ
−2
j

.

1 Find EȲ .
2 Find Var Ȳ .
3 Find EỸ .
4 Find Var Ỹ .
5 Consider case σ2

1 = · · · = σ2
n .
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Covariance and correlation

Bivariate Normal distribution
The rvs (X ,Y ) have the bivariate Normal distribution if they have joint pdf

f (x , y ;µX , µY , σX , σY , ρ) =
1
2π

1

σXσY
√

1− ρ2

× exp

[
− 1
2(1− ρ2)

([
X − µX

σX

]
− 2ρ

[
X − µX

σX

] [
Y − µY

σY

]
+

[
Y − µY

σY

]2
)]

,

where
µX and µY are mean of X and Y .
σ2
X and σ2

Y are variance of X and Y .
ρ is corr(X ,Y ).

Exercise: Show biv-Normal (X ,Y ) are independent iff corr(X ,Y ) = 0.
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Covariance and correlation
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Covariance and correlation

Exercise: Show that with ρ = σXY /(σXσY ), we can write the biv-Normal pdf as

f (x , y) =

exp

[
− 1

2

(
X − µX

Y − µY

)T (
σ2
X σXY

σXY σ2
Y

)−1(
X − µX

Y − µY

)]

2π ·

∣∣∣∣∣ σ2
X σXY

σXY σ2
Y

∣∣∣∣∣
1/2 .

Multivariate Normal distribution
Let X = (X1, . . . ,Xd)T be a vector of rvs with joint pdf

f (x) =
1

(2π)d/2|Σ|1/2
exp

[
− 1

2 (x− µ)TΣ−1(x− µ)
]
,

where µ ∈ Rd and Σ a symmetric positive definite d × d matrix.

Then we say X has the multivariate Normal distribution with mean vector µ and
covariance matrix Σ, where EXj = µj and Cov(Xj ,Xk) = Σjk , 1 ≤ j , k ≤ d .
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Cauchy-Schwarz, Hölder’s, Minkowski’s, and Jensen’s inequalities
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Cauchy-Schwarz, Hölder’s, Minkowski’s, and Jensen’s inequalities

Theorem (Cauchy-Schwarz Inequality)

For any rvs X and Y we have |EXY | ≤ E|XY | ≤
√
EX 2
√
EY 2.

Exercise:
1 Prove the inequality.
2 Use to prove corr(X ,Y ) ∈ [−1, 1] for any rvs X , Y .
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Cauchy-Schwarz, Hölder’s, Minkowski’s, and Jensen’s inequalities

Theorem (Hölder’s inequality)
For any two rvs X and Y and any p, q ≥ 1 such that 1/p + 1/q = 1, we have

|EXY | ≤ E|XY | ≤ (E|X |p)1/p(E|Y |q)1/q

The Cauchy-Schwarz is a special case of Hölder’s with p = q = 2.

Use fact that for any a > 0, b > 0 and p, q ≥ 1 such that 1/p + 1/q = 1, we have

ap

p
+

bq

q
≥ ab.
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Cauchy-Schwarz, Hölder’s, Minkowski’s, and Jensen’s inequalities

Theorem (Minkowski’s inequality)
For any rvs X and Y and any p ∈ [1,∞) we have

(E|X + Y |p)1/p ≤ (E|X |p)1/p + (E|Y |p)1/p.

Exercise: Let Z1 and Z2 be standard Normals rvs.
1 Give an upper bound for (E|Z1 − Z2|2)1/2 using Minkowski’s inequality.
2 Give (E|Z1 − Z2|2)1/2 exactly, letting ρ = corr(Z1,Z2).
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Cauchy-Schwarz, Hölder’s, Minkowski’s, and Jensen’s inequalities

Theorem (Jensen’s inequality)
For any rv X and any convex function g we have g(EX ) ≤ Eg(X ).

Exercise: Prove Jensen’s inequality. Recall that g is convex if

g(λx + (1− λ)x ′) ≤ λg(x) + (1− λ)g(x ′) for all λ ∈ (0, 1), x , x ′ ∈ R.

We often use Jensen’s to claim eEX ≤ EeX and logEX ≥ E logX .
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Hierarchical models

1 Covariance and correlation

2 Cauchy-Schwarz, Hölder’s, Minkowski’s, and Jensen’s inequalities
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Hierarchical models

Often (X ,Y ) relation is most clearly described by a conditional and marginal:

f (y |x) =
f (x , y)

fX (x)
⇐⇒ f (x , y) = f (y |x)fX (x).

A hierarchical model describes the joint dist. of an rv pair (X ,Y ) in the form

Y |X ∼ Some distribution depending on X

X ∼ Some distribution

Can use to get interesting marginal distributions for Y , which take the form

fY (y) =

∫ ∞
−∞

f (y |x)fX (x)dx .
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Hierarchical models

Poisson-Binomial hierarchical model example
Let

X = # customers entering a store in a day
Y = # customers who make purchases

We might assume the following hierarchical model for Y :

Y |X ∼ Binomial(X , p)

X ∼ Poisson(λ).

Exercise: Find the following:
1 The joint pmf of (X ,Y ).
2 The marginal pmf of Y .
3 EY and VarY .
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Hierarchical models

Theorem (iterated expectation and iterated variance)
For any random variables X and Y we have

EY = E(E[Y |X ])

VarY = E(Var[Y |X ]) + Var(E[Y |X ])

Exercise:
1 Prove the 1st result above.
2 Apply results to previous example.
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Hierarchical models

Normal random-effects hierarchical model
Let an elementary-school pupil from the U.S. be chosen at random and let

Y = score on a standardized test the selected pupil.
A = average test score at the school of the selected pupil.

We might assume the following hierarchical model for Y :

Y |A ∼ Normal(A, σ2)

A ∼ Normal(µA, σ
2
A).

Exercise:
1 Find EY and VarY .
2 Find the marginal pdf of Y .
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Hierarchical models

We can use hierarchical models to make interesting “mixture” distributions:

Mixture distribution induced by a hierarchical model
For a pair of rvs (X ,Y ), let p and f represent pmfs and pdfs, respectively. Then

Y |X ∼ f (y |x) with X ∼ fX (x) gives fY (y) =
∫
R f (y |x)fX (x)dx .

Y |X ∼ p(y |x) with X ∼ pX (x) gives pY (y) =
∑

x∈X p(y |x)pX (x)dx .

Y |X ∼ f (y |x) with X ∼ pX (x) gives fY (y) =
∑

x∈X f (y |x)pX (x)dx

Y |X ∼ p(y |x) with X ∼ fX (x) gives pY (y) =
∫
R p(y |x)fX (x)dx .

The marginal distributions of Y are called mixture distributions.
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Hierarchical models

Beta-Binomial hierarchical model example
Let a spectator of a basketball game be chosen at random and let

Y = # freethrows made out of n attempts by the chosen spectator.
P = free-throw success rate of the chosen spectator.

We might assume the following hierarchical model for Y :

Y |P ∼ Binomial(n,P)

P ∼ Beta(α, β).

Exercise: Find
1 EY and VarY .
2 The marginal distribution of Y .
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Hierarchical models

Exercise: Let (X ,Y ) be a pair of rvs such that

Y |X ∼ Beta(3/2− X , 1/2 + X )

X ∼ Uniform(0, 1)

1 Find Cov(X ,Y )

2 Find VarY .
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Hierarchical models
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Hierarchical models

Multinoulli trial
A multinoulli trial is an experiment in which there are K possible outcomes which
occur with the probabilities p1, . . . , pK , where

∑K
k=1 pk = 1.

Extends Bernoulli trial (two outcomes) to two or more outcomes.
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Hierarchical models

Multinoulli distribution
Let the random variables X1, . . . ,XK encode the outcome of a multinoulli trial as

Xk =

{
1 if outcome k occurs
0 otherwise for k = 1, . . . ,K .

Then the set (X1, . . . ,XK ) of K rvs has the multinoulli distribution and we write

(X1, . . . ,XK ) ∼ Multinoulli(p1, . . . , pK ).

Exercise:
1 Write down the joint pmf of (X1, . . . ,XK ).
2 Find the marginal pmf of Xk for each k = 1, . . . ,K .
3 Find EXk and Cov(Xk ,Xk′).
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Hierarchical models

Gaussian mixture hierarchical model
Consider the hierarchical model

Y |(X1, . . . ,XK ) ∼ Normal
(∑K

k=1 Xkµk ,
∑K

k=1 Xkσ
2
k

)
and

(X1, . . . ,XK ) ∼ Multinoulli(p1, . . . , pK ),

where (µ1, σ
2
1), . . . , (µK , σ

2
K ) are K mean and variance pairs.

Exercise: Find EY and VarY . Then find the marginal distribution of Y .
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Hierarchical models
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Hierarchical models

Multinomial distribution
For k = 1, . . . ,K , let Yk be # times outcome k occurrs in n independent
Multinoulli trials with the outcome probabilities p1, . . . , pK .

Then the set of rvs (Y1, . . . ,YK ) has the multinomial distribution and we write

(Y1, . . . ,YK ) ∼ Multinomial(n, p1, . . . , pK ).

The joint pmf of (Y1, . . . ,YK ) is given by

p(y1, . . . , yK ) =

(
n!

y1! · · · yK !

)
py11 · · · p

yK
K

for (y1, . . . , yK ) ∈ {0, 1, . . . , n}K st
∑K

k=1 yk = n.

Note: For k = 1, . . . ,K the marginal distribution of yk is Binomial(n, pk).
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Hierarchical models

Exercise: Let Z ∼ Normal(0, 1) and let µ ∈ R.
1 Find the pdf of W = (Z + µ)2. This has the non-central chi-squared dist.
2 Find the marginal pdf of U in the hierarchical model

U|K ∼ χ2
1+2K

K ∼ Poisson(µ2/2).

3 Compare these using the fact that

2k√
2π

k!

(2k)!
=

1
Γ(k + 1/2)2k+1/2 for all k = 0, 1, . . .
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