STAT 712 fa 2022 Lec 13 slides

Order statistics

Karl B. Gregory
University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture, definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.

Order statistics

Given a random sample X_{1}, \ldots, X_{n}, define

$$
\begin{aligned}
X_{(1)} & =\text { the least of } X_{1}, \ldots, X_{n} \\
X_{(2)} & =\text { the next-to-least of } X_{1}, \ldots, X_{n} \\
& \vdots \\
X_{(n)} & =\text { the greatest of } X_{1}, \ldots, X_{n} .
\end{aligned}
$$

Then $X_{(1)}<X_{(2)}<\cdots<X_{(n)}$ are called the order statistics of the rs.

Exercise: Define range, midrange, and median with order statistics.

Theorem (pdf of k th order statistic)

Let $X_{(1)}, \ldots, X_{(n)}$ be the order statistics of a $r s$ with $c d f F_{X}$ and $p d f f_{X}$.
Then the pdf of $X_{(k)}$ is given by

$$
f_{X_{(k)}}(x)=\frac{n!}{(k-1)!(n-k)!}\left[F_{X}(x)\right]^{k-1}\left[1-F_{X}(x)\right]^{n-k} f_{X}(x),
$$

for $k=1, \ldots, n$.

Exercises:

(1) Derive the above.
(2) Let $U_{1}, \ldots, U_{n} \stackrel{\text { ind }}{\sim}$ Uniform $(0,1)$. Find pdf of $U_{(k)}$, find $\mathbb{E} U_{(k)}$ and $\operatorname{Var} U_{(k)}$.
(3) Draw samples $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Uniform}(0,1)$ and record k th order statistic. Make histograms. Use $n=10$ and consider $k=1,5,9$.

Exercise: Let X_{1}, \ldots, X_{n} be independent rvs with $\operatorname{cdf} F_{X}(x)=\left(1+e^{-x}\right)^{-1}$.
(1) Find the pdf of the k th order statistic.
(c) Draw samples X_{1}, \ldots, X_{n} from F_{X} and record k th order statistic. Make histograms. Use $n=10$ and consider $k=1,5,9$.

Corollary (pdf of minimum and maximum)

Let $X_{(1)}, \ldots, X_{(n)}$ be the order statistics of a rs with $c d f F_{X}$ and $p d f f_{X}$. Then

- $X_{(1)}$ has cdf and pdf given by

$$
\begin{aligned}
F_{X_{(1)}}(x) & =1-\left[1-F_{X}(x)\right]^{n} \\
f_{X_{(1)}}(x) & =n\left[1-F_{X}(x)\right]^{n-1} f_{X}(x)
\end{aligned}
$$

- $X_{(n)}$ has cdf and pdf given by

$$
\begin{aligned}
F_{X_{(n)}}(x) & =\left[F_{X}(x)\right]^{n} \\
f_{X_{(n)}}(x) & =n\left[F_{X}(x)\right]^{n-1} f_{X}(x)
\end{aligned}
$$

Exercise: Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim}$ Exponential (λ).
(1) Find the pdf of $X_{(n)}$.
(2) Find the pdf of $X_{(1)}$ and identify the distribution.

Theorem (Joint pdf of two order statistics)
Let $X_{(1)}, \ldots, X_{(n)}$ be the order statistics of a rs with $c d f F_{X}$ and $p d f f_{X}$.
Then the joint pdf of $X_{(j)}$ and $X_{(k)}, 1 \leq j<k \leq n$, is given by

$$
\begin{aligned}
f_{X_{(j)}, X_{(k)}}(u, v)= & \frac{n!}{(j-1)!(k-j-1)!(n-k)!} f_{X}(u) f_{X}(v) \\
& \quad \times\left[F_{X}(u)\right]^{j-1}\left[F_{X}(v)-F_{X}(u)\right]^{k-j-1}\left[1-F_{X}(v)\right]^{n-k}
\end{aligned}
$$

$$
\text { for }-\infty<u<v<\infty .
$$

Exercise: Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Uniform}(0,1)$.
(1) Find the joint pdf of the order statistics $U=X_{(k)}$ and $V=X_{(k+1)}$.
(2) Draw samples $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Uniform}(0,1)$ and record $\left(X_{(k)}, X_{(k+1)}\right)$. Make a scatterplot of the values. Use $n=10, k=2$.

Order stat 2 of 10

Corollary (Joint pdf of min and max)

Let $X_{(1)}, \ldots, X_{(n)}$ be the order statistics of a rs with $c d f F_{X}$ and $p d f f_{X}$.
The joint pdf of $X_{(1)}$ and $X_{(n)}$ is given by

$$
f_{X_{(1)}, X_{(n)}}(u, v)=n(n-1) f_{X}(u) f_{X}(v)\left[F_{X}(v)-F_{X}(u)\right]^{n-2}
$$

for $-\infty<u<v<\infty$.

Exercise: Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Uniform}(0, \theta)$.
(1) Find the joint pdf of $X_{(1)}$ and $X_{(n)}$.
(2) Find the joint pdf of $R=X_{(n)}-X_{(1)}$ and $M=X_{(n)}$.
(0) Find the marginal pdf of R.
(1) Draw realizations of the range of Uniform $(0,1)$ samples with $n=4,8,16$.

Make histograms and overlay densities.

