STAT 712 fa 2021 Exam 2

1. Let $X_{1} \sim \operatorname{Exponential}\left(\beta_{1}\right)$ and $X_{2} \sim \operatorname{Exponential}\left(\beta_{2}\right)$ be independent random variables and consider $R=X_{1} / X_{2}$ and $U=X_{2}$.
(a) Give the joint pdf of random variable pair (R, U).

The joint pdf of the random variable pair $\left(X_{1}, X_{2}\right)$ is given by

$$
f_{X_{1}, X_{2}}\left(x_{1}, x_{2}\right)=\frac{1}{\beta_{1}} e^{-x_{1} / \beta_{1}} \frac{1}{\beta_{2}} e^{-x_{2} / \beta_{2}} \cdot \mathbf{1}\left(x_{1}>0, x_{2}>0\right),
$$

and since $\left(X_{1}, X_{2}\right) \in(0, \infty) \times(0, \infty)$, we see that $(R, U) \in(0, \infty) \times(0, \infty)$. Now, we have

$$
\begin{aligned}
& r=x_{1} / x_{2}=: g_{1}\left(x_{1}, x_{2}\right) \\
& u=x_{2}=: g_{2}\left(x_{1}, x_{2}\right)
\end{aligned} \Longleftrightarrow \begin{aligned}
& x_{1}=u r=: g_{1}^{-1}(u, r) \\
& x_{2}=u=: g_{2}^{-1}(u, r)
\end{aligned}
$$

with Jacobian

$$
J(x, y)=\left|\begin{array}{cc}
\frac{d}{d u} u r & \frac{d}{d d u} u \\
\frac{d}{d u} u & \frac{d}{d r} u
\end{array}\right|=\left|\begin{array}{cc}
r & u \\
1 & 0
\end{array}\right|=-u .
$$

The joint pdf of the random variable pair (R, U) is given by

$$
\begin{aligned}
f_{R, U}(r, u) & =\frac{1}{\beta_{1}} e^{-(u r) / \beta_{1}} \frac{1}{\beta_{2}} e^{-u / \beta_{2}} \cdot u \\
& =\frac{1}{\beta_{1} \beta_{2}} \cdot u \cdot \exp \left[-u\left(\frac{r}{\beta_{1}}+\frac{1}{\beta_{2}}\right)\right]
\end{aligned}
$$

for $r>0$ and $u>0$.
(b) State whether R and U are independent and explain how you know.

Since we cannot factorize the joint pdf $f_{R, U}(r, u)$ of (R, U) into the product of a function of only r and a function of only u, the random variables R and U are not independent.
(c) Give the marginal pdf of R.

The marginal pdf of R is given by

$$
\begin{aligned}
f_{R}(r)= & \int_{0}^{\infty} \frac{1}{\beta_{1} \beta_{2}} \cdot u \cdot \exp \left[-u\left(\frac{r}{\beta_{1}}+\frac{1}{\beta_{2}}\right)\right] d u \\
& =\frac{\left(\frac{r}{\beta_{1}}+\frac{1}{\beta_{2}}\right)^{-1}}{\beta_{1} \beta_{2}} \int_{0}^{\infty} \frac{u}{\left(\frac{r}{\beta_{1}}+\frac{1}{\beta_{2}}\right)^{-1} \cdot \exp \left[-u /\left(\frac{r}{\beta_{1}}+\frac{1}{\beta_{2}}\right)^{-1}\right] d u} \\
& =\frac{\left(\frac{r}{\beta_{1}}+\frac{1}{\beta_{2}}\right)^{-1}}{\beta_{1} \beta_{2}} \cdot\left(\frac{r}{\beta_{1}}+\frac{1}{\beta_{2}}\right)^{-1} \\
& =\frac{\beta_{1} \beta_{2}}{\left(\beta_{1}+\beta_{2} r\right)^{2}}
\end{aligned}
$$

for $r>0$.
(d) Give the conditional pdf of $U \mid R=r$.

For any $r>0$, the conditional pdf of $U \mid R=r$ is given by

$$
\begin{aligned}
f(u \mid r) & =\frac{f_{R, U}(r, u)}{f_{R}(r)} \\
& =\frac{\frac{1}{\beta_{1} \beta_{2}} \cdot u \cdot \exp \left[-u\left(\frac{r}{\beta_{1}}+\frac{1}{\beta_{2}}\right)\right]}{\frac{\beta_{1} \beta_{2}}{\left(\beta_{2}+\beta_{1} r\right)^{2}}} \\
& =\frac{1}{\Gamma(2)\left(\frac{r}{\beta_{1}}+\frac{1}{\beta_{2}}\right)^{-2} \cdot u^{2-1} \cdot \exp \left[-u /\left(\frac{r}{\beta_{1}}+\frac{1}{\beta_{2}}\right)^{-1}\right]}
\end{aligned}
$$

which we recognize as the pdf of the $\operatorname{Gamma}\left(2,\left(r / \beta_{1}+1 / \beta_{2}\right)^{-1}\right)$ distribution.
2. Consider the pair of random variables (X, Y) arising from the hierarchical model

$$
\begin{aligned}
Y \mid X & \sim \operatorname{Normal}(X, 1) \\
X & \sim p_{X}(x)=(1 / 2) \cdot \mathbf{1}(x=1)+(1 / 2) \cdot \mathbf{1}(x=-1) .
\end{aligned}
$$

(a) Give the mean and variance of Y.

We can quickly find that $\mathbb{E} X=0$ and $\mathbb{E} X^{2}=1$, so that $\operatorname{Var} X=1$. Then we have

$$
\begin{aligned}
\mathbb{E} Y & =\mathbb{E}(\mathbb{E}[Y \mid X])=\mathbb{E}(X)=0 \\
\operatorname{Var} Y & =\operatorname{Var}(\mathbb{E}[Y \mid X])+\mathbb{E}(\operatorname{Var}[Y \mid X])=\operatorname{Var}(X)+\mathbb{E}(1)=1+1=2
\end{aligned}
$$

(b) Give the marginal pdf of Y.

The marginal pdf of Y is given by

$$
\begin{aligned}
f_{Y}(y) & =\sum_{x \in\{-1,1\}} p_{X}(x) \cdot \frac{1}{\sqrt{2 \pi}} e^{-(y-x)^{2} / 2} \\
& =\frac{1}{2} \frac{1}{\sqrt{2 \pi}} e^{-(y-1)^{2} / 2}+\frac{1}{2} \frac{1}{\sqrt{2 \pi}} e^{-(y+1)^{2} / 2} .
\end{aligned}
$$

(c) Give the covariance of X and Y.

We have

$$
\operatorname{Cov}(X, Y)=\mathbb{E} X Y-\underbrace{\mathbb{E} X}_{=0} \mathbb{E} Y=\mathbb{E}(\mathbb{E}[X Y \mid X])=\mathbb{E}(X \cdot \mathbb{E}[Y \mid X])=\mathbb{E}(X \cdot X)=1 .
$$

(d) Give the correlation of X and Y.

We have

$$
\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var} X} \sqrt{\operatorname{Var} Y}}=\frac{1}{\sqrt{1} \sqrt{2}}=\frac{1}{\sqrt{2}}
$$

3. Let $Z_{1}, \ldots, Z_{8} \stackrel{\text { ind }}{\sim} \operatorname{Normal}(0,1)$. Use Z_{1}, \ldots, Z_{8} to construct a random variable having the
(a) $\operatorname{Normal}(0,1 / 8)$ distribution.

We have $(1 / 8)\left(Z_{1}+Z_{2}+Z_{3}+Z_{4}+Z_{5}+Z_{6}+Z_{7}+Z_{8}\right) \sim \operatorname{Normal}(0,1 / 8)$.
(b) χ_{4}^{2} distribution.

We have $Z_{1}^{2}+Z_{2}^{2}+Z_{3}^{2}+Z_{4}^{2} \sim \chi_{4}^{2}$.
(c) t_{5} distribution.

We have

$$
\frac{Z_{1}}{\sqrt{\left(Z_{2}^{2}+Z_{3}^{2}+Z_{4}^{2}+Z_{5}^{2}+Z_{6}^{2}\right) / 5}} \sim t_{5} .
$$

(d) $F_{4,4}$ distribution.

We have

$$
\frac{\left(Z_{1}^{2}+Z_{2}^{2}+Z_{3}^{2}+Z_{4}^{2}\right) / 4}{\left(Z_{5}^{2}+Z_{6}^{2}+Z_{7}^{2}+Z_{8}^{2}\right) / 4} \sim F_{4,4} .
$$

4. Let X_{1}, X_{2}, \ldots be independent random variables such that

$$
\log \left(\mathbb{E} \exp \left(t X_{i}\right)\right)=-(1 / 2)^{i} \log (1-t) \quad \text { for } t<1
$$

for $i=1,2, \ldots$ Now, let $Y_{n}=\sum_{i=1}^{n} X_{i}$ for $n \geq 1$.
(a) Give the moment generating function $M_{Y_{n}}(t)$ of Y_{n}.

We see that the mgf of X_{i} is

$$
M_{X_{i}}(t)=(1-t)^{-(1 / 2)^{i}} \quad \text { for } t<1, \quad i=1,2, \ldots,
$$

so we have

$$
M_{Y_{n}}(t)=\prod_{i=1}^{n} M_{X_{i}}(t)=\prod_{i=1}^{n}(1-t)^{-(1 / 2)^{i}}=(1-t)^{\sum_{i=1}^{n}(1 / 2)^{i}} .
$$

(b) Give the limit as $n \rightarrow \infty$ of $M_{Y_{n}}(t)$ and identify the distribution to which it belongs.

Noting that

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n}(1 / 2)^{i}=1
$$

we see that $\lim _{n \rightarrow \infty} M_{Y_{n}}(t)=(1-t)^{-1}$ for all $t<1$, which is the moment generating function of the Exponential(1) distribution.

