STAT 712 fa 2021 Final Exam

1. Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} f_{X}(x)=e^{-(x-\mu)} \mathbf{1}(x>\mu)$ and let $X_{(1)}<\cdots<X_{(n)}$ be the order statistics.
(a) Give the pdf of $X_{(1)}$.

The cdf corresponding to the $\operatorname{pdf} f_{X}$ is given by

$$
F_{X}(x)=1-e^{-(x-\mu)}
$$

for $x>\mu$, so we have

$$
f_{X_{(1)}}(x)=n\left[1-\left(1-e^{-(x-\mu)}\right)\right]^{n-1} e^{-(x-\mu)}=n e^{-n(x-\mu)}
$$

for $x>\mu$.
(b) Give the value to which $X_{(1)}$ converges in probability; establish the convergence.

We have $X_{(1)} \xrightarrow{p} \mu$, since, for any $\varepsilon>0$, we have

$$
\begin{aligned}
P\left(\left|X_{(1)}-\mu\right|<\varepsilon\right) & =P\left(\mu-\varepsilon<X_{(1)}<\mu+\varepsilon\right) \\
& =P\left(\mu<X_{(1)}<\mu+\varepsilon\right) \\
& =\int_{\mu}^{\mu+\varepsilon} n e^{-n(x-\mu)} d x \\
& =1-e^{-n \varepsilon} \\
& \rightarrow 1
\end{aligned}
$$

as $n \rightarrow \infty$.
(c) Give the value to which $\bar{X}_{n}=n^{-1} \sum_{i=1}^{n} X_{i}$ converges in probability; establish the convergence.

By the WLLN, $\bar{X}_{n} \xrightarrow{p} \mathbb{E} X_{1}$ provided $\operatorname{Var} X_{1}<\infty$. We have $\mathbb{E} X_{1}=\mu+1$ and $\operatorname{Var} X_{1}=1$ (do integrals or note that the distribution is a shifted exponential), so $\bar{X}_{n} \xrightarrow{p} \mu+1$.
2. Let the random variable pair (X, Y) have joint density given by

$$
f_{X, Y}(x, y)=\frac{6}{c} \exp \left[-\frac{y}{c x}\right](1-x) \cdot \mathbf{1}(0<x<1, y>0)
$$

for some $c>0$.
(a) Find the marginal pdf f_{X} of X.

We have

$$
f_{X}(x)=\int_{0}^{\infty} \frac{6}{c} \exp \left[-\frac{y}{c x}\right](1-x)=6 x(1-x),
$$

so we write

$$
f_{X}(x)=6 x(1-x) \mathbf{1}(0<x<1) .
$$

(b) Find the conditional pdf $f(y \mid x)$ of Y given $X=x$.

For any $x \in(0,1)$, we have

$$
f(y \mid x)=\frac{1}{c x} \exp \left[-\frac{y}{c x}\right] \mathbf{1}(y>0)
$$

(c) Give $\mathbb{E} Y$ and $\operatorname{Var} Y$.

Noting that $Y \mid X=x \sim \operatorname{Exponential}(c x)$ and that

$$
\mathbb{E} X=\frac{1}{2} \quad \text { and } \quad \operatorname{Var} X=\frac{1}{20},
$$

we have

$$
\mathbb{E} Y=\mathbb{E}(\mathbb{E}[Y \mid X])=\mathbb{E}(c X)=\frac{c}{2}
$$

and
$\operatorname{Var} Y=\operatorname{Var}(\mathbb{E}[Y \mid X])+\mathbb{E}(\operatorname{Var}[Y \mid X])=\operatorname{Var}(c X)+\mathbb{E}\left(c^{2} X^{2}\right)=\frac{c^{2}}{20}+c^{2}\left[\frac{1}{20}+\left(\frac{1}{2}\right)^{2}\right]=c^{2} \cdot \frac{7}{20}$.
3. Let $Y_{1}, \ldots, Y_{n} \stackrel{\text { ind }}{\sim} f_{Y}(y)=3 y^{2} \cdot \mathbf{1}(0<y<1)$.
(a) Find the values a and b such that

$$
\sqrt{n}\left(n^{-1} \sum_{i=1}^{n} \frac{1}{Y_{i}}-a\right) \xrightarrow{\mathrm{D}} \operatorname{Normal}(0, b) \quad \text { as } n \rightarrow \infty .
$$

Letting $U_{1}=1 / Y_{1}$, we have

$$
\mathbb{E} U_{1}=\int_{0}^{1} \frac{1}{y} \cdot 3 y^{2} d y=\int_{0}^{1} 3 y d y=\left.\frac{3}{2} y^{2}\right|_{0} ^{1}=\frac{3}{2}
$$

and

$$
\mathbb{E} U_{1}^{2}=\int_{0}^{1} \frac{1}{y^{2}} \cdot 3 y^{2} d y=\int_{0}^{1} 3 d y=3
$$

so that $\operatorname{Var} U_{1}=3-(3 / 2)^{2}=3 / 4$. Therefore, the convergence in distribution holds for

$$
a=\frac{3}{2} \quad \text { and } \quad b=\frac{3}{4}
$$

by the central limit theorem.
(b) Find the values c and d such that

$$
\sqrt{n}\left(\frac{1}{\bar{Y}_{n}}-c\right) \xrightarrow{\mathrm{D}} \operatorname{Normal}(0, d) \quad \text { as } n \rightarrow \infty .
$$

We have

$$
\mathbb{E} Y_{1}=\int_{0}^{1} y \cdot 3 y^{2} d y=\int_{0}^{1} 3 y^{3} d y=3 / 4
$$

and

$$
\mathbb{E} Y_{1}^{2}=\int_{0}^{1} y^{2} \cdot 3 y^{2} d y=\int_{0}^{1} 3 y^{4} d y=3 / 5
$$

so that $\operatorname{Var} Y_{1}=(3 / 5)-(3 / 4)^{2}=3 / 80$. So the central limit theorem gives

$$
\sqrt{n}\left(\bar{Y}_{n}-3 / 4\right) \xrightarrow{\mathrm{D}} \operatorname{Normal}(0,3 / 80)
$$

as $n \rightarrow \infty$. Now use the delta method with the function $g(z)=z^{-1}$, which has derivative $g^{\prime}(z)=-1 / z^{2}$. We obtain

$$
\sqrt{n}\left(\left(\bar{Y}_{n}\right)^{-1}-4 / 3\right) \xrightarrow{\mathrm{D}} \operatorname{Normal}\left(0,\left[-1 /(3 / 4)^{2}\right]^{2} \cdot 3 / 80\right),
$$

as $n \rightarrow \infty$, where the asymptotic variance simplifies to $\left[-1 /(3 / 4)^{2}\right]^{2} \cdot 3 / 80=16 / 135$. So the convergence in distribution holds for

$$
c=\frac{4}{3} \quad \text { and } \quad d=\frac{16}{135}
$$

4. For each $n \geq 1$, let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} f_{X}(x)=\alpha x^{-(\alpha+1)} \mathbf{1}(x \geq 1)$ for some $\alpha>0$, and set $Y_{n}=n^{-1 / \alpha} X_{(n)}$.
(a) Give sequences a_{n} and b_{n} of real numbers such that $a_{n}\left(\bar{X}_{n}-b_{n}\right) \xrightarrow{\mathrm{D}} Z \sim \operatorname{Normal}(0,1)$. Discuss any restrictions needed on the value of α.

Provided $\alpha>2$, we can work out that

$$
\mathbb{E} X_{1}=\frac{\alpha}{\alpha-1} \quad \text { and } \quad \mathbb{E} X_{1}^{2}=\frac{\alpha}{\alpha-2}
$$

so that

$$
\operatorname{Var} X_{1}=\frac{\alpha}{\alpha-2}-\left(\frac{\alpha}{\alpha-1}\right)^{2}=\frac{\alpha}{(\alpha-2)(\alpha-1)^{2}}
$$

Then the central limit theorem gives that

$$
\sqrt{n \cdot \frac{(\alpha-2)(\alpha-1)^{2}}{\alpha}}\left(\bar{X}_{n}-\frac{\alpha}{\alpha-1}\right) \xrightarrow{\mathrm{D}} Z \sim \operatorname{Normal}(0,1),
$$

so the convergence holds under

$$
a_{n}=\sqrt{n \cdot \frac{(\alpha-2)(\alpha-1)^{2}}{\alpha}} \quad \text { and } \quad b_{n}=\frac{\alpha}{\alpha-1} .
$$

(b) Give the cdf F_{Y} such that $Y_{n} \xrightarrow{\mathrm{D}} Y \sim F_{Y}$ as $n \rightarrow \infty$.

First, the cdf of $X_{(n)}$ is given by $F_{X_{(n)}}(x)=\left(1-x^{-\alpha}\right)^{n}$, for $x \geq 1$. Next, note that $Y_{n} \in$ $\left(n^{-1 / \alpha}, \infty\right)$. Now, for any $y \geq n^{-1 / \alpha}$, we have

$$
\begin{aligned}
F_{Y_{n}}(y) & =P\left(Y_{n}<y\right) \\
& =P\left(n^{-1 / \alpha} X_{(n)}<y\right) \\
& =P\left(X_{(n)}<n^{1 / \alpha} y\right) \\
& =\left(1-\left(n^{1 / \alpha} y\right)^{-\alpha}\right)^{n} \\
& =\left(1-y^{-\alpha} / n\right)^{n}
\end{aligned}
$$

From this we see that $F_{Y_{n}}(y) \rightarrow e^{-y^{-\alpha}}$ as $n \rightarrow \infty$ for any $y>0$, so $Y_{n} \xrightarrow{\mathrm{D}} Y \sim F_{Y}$, where

$$
F_{Y}= \begin{cases}e^{-y^{-\alpha}} & y>0 \\ 0 & y \leq 0\end{cases}
$$

