STAT 712 fa 2022 Exam 1

1. Let A, B, and C be events such that A and B are independent with $P(A)=1 / 2$ and $P(B)=1 / 3$, and

$$
P\left(C \mid A^{c} \cap B\right)=P\left(C \mid A \cap B^{c}\right)=P(C \mid A \cap B)=P\left(C^{c} \mid A^{c} \cap B^{c}\right)=3 / 4
$$

(a) Give $P\left(C \cap A^{c} \cap B^{c}\right)$.
(b) Give $P\left(C \cap A^{c}\right)$.
(c) Give $P(A \mid C)$.
2. Let $X \sim f_{X}(x)=\alpha e^{\alpha x} e^{-e^{\alpha x}}$ for all $x \in \mathbb{R}$ for some $\alpha>0$. Let $Y=e^{\alpha X}$.
(a) Give the pdf of Y. Make sure to define it for all $y \in \mathbb{R}$.
(b) Give the mgf of Y.
(c) Give $\mathbb{E}(Y-\mathbb{E} Y)^{3}$.
3. Consider the pdf given by

$$
f(x)= \begin{cases}0, & x<0 \\ x, & 0 \leq x<1 \\ 2-x, & 1 \leq x<2 \\ 0, & 2 \leq x\end{cases}
$$

(a) For $X \sim f$, give $\mathbb{E} X$.
(b) Give the cdf F corresponding to the pdf f. Make sure to define it for all $x \in \mathbb{R}$.
(c) Suppose $U \sim \operatorname{Uniform}(0,1)$. Explain how you would find a transformation g such that $X=g(U)$ has pdf f (you do not need to give the transformation).
4. Let $U \sim \operatorname{Uniform}(0,1)$ and let $V=1-U$. Show that U and V are identically distributed (have the same cdf).

