STAT 712 fa 2022 Exam 1

1. Let A, B, and C be events such that A and B are independent with $P(A)=1 / 2$ and $P(B)=1 / 3$, and

$$
P\left(C \mid A^{c} \cap B\right)=P\left(C \mid A \cap B^{c}\right)=P(C \mid A \cap B)=P\left(C^{c} \mid A^{c} \cap B^{c}\right)=3 / 4
$$

(a) Give $P\left(C \cap A^{c} \cap B^{c}\right)$.

We have

$$
\begin{aligned}
P\left(C \cap A^{c} \cap B^{c}\right) & =P\left(C \mid A^{c} \cap B^{c}\right) P\left(A^{c} \cap B^{c}\right) \\
& =\left(1-P\left(C^{c} \mid A^{c} \cap B^{c}\right)\right) P\left(A^{c}\right) P\left(B^{c}\right) \\
& =(1-3 / 4) \cdot 1 / 2 \cdot 2 / 3 \\
& =1 / 12 .
\end{aligned}
$$

(b) Give $P\left(C \cap A^{c}\right)$.

We have

$$
\begin{aligned}
P\left(C \cap A^{c}\right) & =P\left(C \cap A^{c} \cap B\right)+P\left(C \cap A^{c} \cap B^{c}\right) \\
& =P\left(C \mid A^{c} \cap B\right) P\left(A^{c} \cap B\right)+1 / 12 \\
& =3 / 4 \cdot 1 / 2 \cdot 1 / 3+1 / 12 \\
& =5 / 24 .
\end{aligned}
$$

(c) Give $P(A \mid C)$.

We have

$$
P(A \mid C)=\frac{P(C \mid A) P(A)}{P(C \mid A) P(A)+P\left(C \mid A^{c}\right) P\left(A^{c}\right)}
$$

where

$$
\begin{aligned}
P(C \mid A) & =P(C \mid A \cup B)=3 / 4 \\
P\left(C \mid A^{c}\right) & =P\left(C \cap A^{c}\right) / P\left(A^{c}\right)=(5 / 24) /(1 / 2)=5 / 12 .
\end{aligned}
$$

Plugging in these values gives

$$
P(A \mid C)=\frac{3 / 4 \cdot 1 / 2}{3 / 4 \cdot 1 / 2+5 / 12 \cdot 1 / 2}=9 / 14
$$

2. Let $X \sim f_{X}(x)=\alpha e^{\alpha x} e^{-e^{\alpha x}}$ for all $x \in \mathbb{R}$ for some $\alpha>0$. Let $Y=e^{\alpha X}$.
(a) Give the pdf of Y. Make sure to define it for all $y \in \mathbb{R}$.

We first note that $\mathcal{Y}=(0, \infty)$. Now we have

$$
y=e^{\alpha x}=g(x) \Longleftrightarrow x=(\log y) / \alpha=g^{-1}(y), \quad \frac{d}{d y} g^{-1}(y)=\frac{1}{\alpha y},
$$

so the transformation method gives

$$
f_{Y}(y)=\alpha e^{\alpha(\log y) / \alpha} e^{-e^{\alpha(\log y) / \alpha}}\left|\frac{1}{\alpha y}\right| \cdot \mathbf{1}(y>0)=e^{-y} \cdot \mathbf{1}(y>0) .
$$

(b) Give the mgf of Y.

We have

$$
\mathbb{E} e^{t Y}=\int_{0}^{\infty} e^{t y} e^{-y} d y=\int_{0}^{\infty} e^{-y(1-t)} d y=-\left.\frac{e^{-y(1-t)}}{1-t}\right|_{0} ^{\infty}=(1-t)^{-1}
$$

provided $t<1$. So

$$
M_{Y}(t)=(1-t)^{-1} \quad \text { for } t<1
$$

(c) Give $\mathbb{E}(Y-\mathbb{E} Y)^{3}$.

Noting that $\mathbb{E} Y^{k}=\int_{0}^{\infty} y^{(k+1)-1} e^{-y}=\Gamma(k)$, we have

$$
\begin{aligned}
\mathbb{E}(Y-\mathbb{E} Y)^{3} & =\mathbb{E} Y^{3}-3 \mathbb{E} Y^{2} \cdot \mathbb{E} Y+3 \mathbb{E} Y \cdot(\mathbb{E} Y)^{2}-(\mathbb{E} Y)^{3} \\
& =\Gamma(4)-3 \Gamma(3) \Gamma(2)+3 \Gamma(2) \Gamma(2)^{2}-\Gamma(2)^{3} \\
& =6-3(2)+3-1 \\
& =2 .
\end{aligned}
$$

3. Consider the pdf given by

$$
f(x)= \begin{cases}0, & x<0 \\ x, & 0 \leq x<1 \\ 2-x, & 1 \leq x<2 \\ 0, & 2 \leq x\end{cases}
$$

(a) For $X \sim f$, give $\mathbb{E} X$.

The pdf f is symmetric around $x=1$, so $\mathbb{E} X=1$.
(b) Give the cdf F corresponding to the pdf f. Make sure to define it for all $x \in \mathbb{R}$.

We have

$$
F(x)= \begin{cases}0, & x<0 \\ x^{2} / 2, & 0 \leq x<1 \\ 1-(2-x)^{2} / 2, & 1 \leq x<2 \\ 1, & 2 \leq x\end{cases}
$$

Drawing a picture of the pdf and computing the areas of the triangle-shaped regions is the simplest way to obtain this.
(c) Suppose $U \sim$ Uniform $(0,1)$. Explain how you would find a transformation g such that $X=g(U)$ has pdf f (you do not need to give the transformation).

We must invert the cdf and set $g=F^{-1}$. Then $X=F^{-1}(U)$ would be a random variable with cdf F. Setting $u=F(x)$ over each piece, we obtain

$$
g(u)= \begin{cases}\sqrt{2 u}, & 0<u \leq 1 / 2 \\ 2-\sqrt{2(1-u)}, & 1 / 2<u<1\end{cases}
$$

4. Let $U \sim \operatorname{Uniform}(0,1)$ and let $V=1-U$. Show that U and V are identically distributed (have the same cdf).

We must show that the U and V have the same cdf. The cdf of U is given by $F_{U}(u)=u$ for $u \in(0,1)$ and, for $v \in(0,1)$, the cdf of V is given by

$$
F_{V}(v)=P(V \leq v)=P(1-U \leq v)=P(U \geq 1-v)=1-P(U<1-v)=1-(1-v)=v .
$$

So U and V are identically distributed.

