STAT 712 fa 2022 Exam 2

1. Let $T \mid U \sim \operatorname{Normal}(c U, 1)$ and $U \sim \operatorname{Normal}(0,1)$ for some $c \in \mathbb{R}$.
(a) Give $\mathbb{E} T$ and $\operatorname{Var} T$.

We have $\mathbb{E} T=\mathbb{E}(\mathbb{E}[T \mid U])=\mathbb{E}(c U)=c \mathbb{E} U=0$ and

$$
\operatorname{Var} T=\mathbb{E}(\operatorname{Var}[T \mid U])+\operatorname{Var}(\mathbb{E}[T \mid U])=\mathbb{E}(1)+\operatorname{Var}(c U)=1+c^{2}
$$

(b) Give $\operatorname{Corr}(T, U)$.

We have $\mathbb{E} T U=\mathbb{E}(\mathbb{E}[T U \mid U])=\mathbb{E}(U \mathbb{E}[T \mid U])=\mathbb{E}(U \cdot c U)=c \mathbb{E} U^{2}=c$. Since $\mathbb{E} T=0$ and $\mathbb{E} U=0$ we have $\operatorname{Cov}(T, U)=\mathbb{E} T U=c$. From here we have

$$
\operatorname{Corr}(T, U)=\frac{c}{\sqrt{1} \cdot \sqrt{1+c^{2}}}=\frac{c}{\sqrt{1+c^{2}}}
$$

(c) Derive the marginal pdf of T.

We have

$$
\begin{aligned}
f_{T}(t) & =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{(z-c u)^{2}}{2}\right) \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{u^{2}}{2}\right) d u \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{z^{2}-2 z c u+c^{2} u^{2}+u^{2}}{2}\right) d u \\
& =\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{z^{2}}{2}\right) \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{u^{2}\left(1+c^{2}\right)-2 z c u}{2}\right) d u \\
& =\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{z^{2}}{2}\right) \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{u^{2}-2 u z c /\left(1+c^{2}\right)}{2 /\left(1+c^{2}\right)}\right) d u \\
& =\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{z^{2}}{2}+\frac{z^{2} c^{2}}{2\left(1+c^{2}\right)}\right) \\
& \times \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{u^{2}-2 u z c /\left(1+c^{2}\right)+\left(z c /\left(1+c^{2}\right)\right)^{2}}{2 /\left(1+c^{2}\right)}\right) d u \\
= & \frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{1+c^{2}}} \exp \left(-\frac{z^{2}}{2\left(1+c^{2}\right)}\right)
\end{aligned}
$$

so that $Z \sim \operatorname{Normal}\left(0,1+c^{2}\right)$.
2. Let (X_{1}, X_{2}) have joint pdf given by

$$
f\left(x_{1}, x_{2}\right)=\frac{1}{x_{2} \lambda} \exp \left[-\frac{x_{1}}{x_{2} \lambda}\right] \mathbf{1}\left(0<x_{2}<1, x_{1}>0\right)
$$

for some $\lambda>0$.
(a) i. Give the marginal pdf of X_{2}.

For $x_{2} \in(0,1)$ we have

$$
f_{X_{2}}\left(x_{2}\right)=\int_{0}^{\infty} \frac{1}{x_{2} \lambda} \exp \left[-\frac{x_{1}}{x_{2} \lambda}\right] d x_{1}=1
$$

so $X_{2} \sim \operatorname{Uniform}(0,1)$.
ii. Give the conditional pdf of X_{1} given $X_{2}=x_{2}$.

Dividing $f\left(x_{1}, x_{2}\right)$ by the marginal pdf of X_{2}, we obtain

$$
f\left(x_{1} \mid x_{2}\right)=\int_{0}^{\infty} \frac{1}{x_{2} \lambda} \exp \left[-\frac{x_{1}}{x_{2} \lambda}\right] \mathbf{1}\left(x_{1}>0\right)
$$

so that $X_{1} \mid X_{2}=x_{2} \sim \operatorname{Exponential}\left(x_{2} \lambda\right)$.
iii. Give $\mathbb{E} X_{1}$ and $\operatorname{Var} X_{1}$.

Noting that $\mathbb{E}\left[X_{1} \mid X_{2}\right]=X_{2} \lambda$ and $\mathbb{E} X_{2}=1 / 2$, the iterated expectation formula gives

$$
\mathbb{E} X_{1}=\mathbb{E}\left(\mathbb{E}\left[X_{1} \mid X_{2}\right]\right)=\mathbb{E}\left(X_{2} \lambda\right)=\lambda / 2
$$

and using $\operatorname{Var}\left[X_{1} \mid X_{2}\right]=\left(X_{2} \lambda\right)^{2}$ and $\operatorname{Var} X_{2}=1 / 12$, the iterated variance formula gives

$$
\begin{aligned}
\operatorname{Var} X_{1} & \left.=\mathbb{E}\left(\operatorname{Var}\left[X_{1} \mid X_{2}\right]\right)+\operatorname{Var}\left(\mathbb{E}\left[X_{1} \mid X_{2}\right]\right)\right) \\
& =\mathbb{E}\left(X_{2}^{2} \lambda^{2}\right)+\operatorname{Var}\left(X_{2} \lambda\right) \\
& =\lambda^{2}(1 / 3)+\lambda^{2}(1 / 12) \\
& =\lambda^{2}(5 / 12) .
\end{aligned}
$$

(b) i. Find the joint pdf of $R=X_{1} / X_{2}$ and $V=X_{2}$.

Firstly, the joint support of (R, V) is $\{(r, u): r>0, v \in(0,1)\}$. Now we have

$$
\begin{aligned}
& r=x_{1} / x_{2}=: g_{1}\left(x_{1}, x_{2}\right) \\
& v=x_{2}=: g_{2}\left(x_{1}, x_{2}\right)
\end{aligned} \Longleftrightarrow \begin{aligned}
& x_{1}=r v=: g_{1}^{-1}(r, v) \\
& x_{2}=v=: g_{2}^{-1}(r, v)
\end{aligned}
$$

with Jacobian

$$
J(r, v)=\left|\begin{array}{ll}
\frac{d}{d r} r v & \frac{d}{d v} r v \\
\frac{d}{d r} v & \frac{d}{d v} v
\end{array}\right|=\left|\begin{array}{cc}
v & r \\
0 & 1
\end{array}\right|=v .
$$

So the joint pdf of (R, V) is given by

$$
f(r, v)=\frac{1}{v \lambda} \exp \left[-\frac{r v}{v \lambda}\right]|v|=\frac{1}{\lambda} e^{-r / \lambda}
$$

for $r>0$ and $v \in(0,1)$.
ii. State whether R and V are independent. Explain.

The random variables R and V are independent since we can factor their joint pdf as

$$
f(r, v)=g(r) h(v), \quad g(r)=\frac{1}{\lambda} e^{-r / \lambda} \mathbf{1}(r>0), \quad h(v)=\mathbf{1}(0<v<1) .
$$

iii. Find the marginal pdf of R.

For $r>0$ the marginal pdf of R is given by

$$
f_{R}(r)=\int_{0}^{1} \frac{1}{\lambda} e^{-r / \lambda} d v=\frac{1}{\lambda} e^{-r / \lambda}
$$

so $R \sim \operatorname{Exponential}(\lambda)$.
3. Let $Z_{1}, Z_{2}, Z_{3}, Z_{4}$ be independent $\operatorname{Normal}(0,1)$ rvs.
(a) Give the distribution of each of the following:
i. $\left(Z_{1}+Z_{2}\right) /\left(\sqrt{2}\left|Z_{3}\right|\right)$

We have $\left(Z_{1}+Z_{2}\right) /\left(\sqrt{2}\left|Z_{3}\right|\right) \sim t_{1}$, since $\left(Z_{1}+Z_{2}\right) / \sqrt{2} \sim \operatorname{Normal}(0,1)$ and $\left|Z_{3}\right|=\sqrt{Z_{3}^{2} / 1}$.
ii. $(1 / 6)\left(Z_{1}-2 Z_{2}+Z_{3}\right)^{2}$

We have $(1 / 6)\left(Z_{1}-2 Z_{2}+Z_{3}\right)^{2} \sim \chi_{1}^{2}$, since $Z_{1}-2 Z_{2}+Z_{3} \sim \operatorname{Normal}(0,6)$, giving $\left(Z_{1}-\right.$ $\left.2 Z_{2}+Z_{3}\right) / \sqrt{6} \sim \operatorname{Normal}(0,1)$.
iii. $Z_{1}^{2} /\left(Z_{2} / \sqrt{2}-Z_{3} / \sqrt{2}\right)^{2}$

We have $Z_{1}^{2} /\left(Z_{2} / \sqrt{2}-Z_{3} / \sqrt{2}\right)^{2} \sim F_{1,1}$.
iv. $(1 / 2)\left[\left(Z_{1}-Z_{2}\right)^{2}+\left(Z_{1}+Z_{2}\right)^{2}\right]$

We have $(1 / 2)\left[\left(Z_{1}-Z_{2}\right)^{2}+\left(Z_{1}+Z_{2}\right)^{2}\right] \sim \chi_{2}^{2}$, since $\operatorname{Cov}\left(Z_{1}-Z_{2}, Z_{1}+Z_{2}\right)=0$, implying independence between $\left(Z_{1}-Z_{2}\right)^{2} / 2$ and $\left(Z_{1}+Z_{2}\right)^{2} / 2$. Since these are both χ_{1}^{2} random variables, their sum is a χ_{2}^{2} random variable.
v. $(1 / 3)\left[\left(Z_{1}-Z_{2}\right)^{2}+\left(Z_{2}-Z_{3}\right)^{2}+\left(Z_{1}-Z_{3}\right)^{2}\right]$

We have $(1 / 3)\left[\left(Z_{1}-Z_{2}\right)^{2}+\left(Z_{2}-Z_{3}\right)^{2}+\left(Z_{1}-Z_{3}\right)^{2}\right] \sim \chi_{2}^{2}$, since

$$
\frac{1}{2 n(n-1)} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(Z_{i}-Z_{j}\right)^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(Z_{i}-\bar{Z}_{n}\right)^{2}
$$

(showing this was a homework problem), so

$$
\frac{1}{n} \sum_{i<j}\left(Z_{i}-Z_{j}\right)^{2}=\sum_{i=1}^{n}\left(Z_{i}-\bar{Z}_{n}\right)^{2} \sim \chi_{n-1}^{2}
$$

For $n=3$ the right hand side is $(1 / 3)\left[\left(Z_{1}-Z_{2}\right)^{2}+\left(Z_{2}-Z_{3}\right)^{2}+\left(Z_{1}-Z_{3}\right)^{2}\right]$. We can also show directly

$$
\begin{aligned}
(1 / 3)\left[\left(Z_{1}-Z_{2}\right)^{2}+\left(Z_{2}-Z_{3}\right)^{2}+\left(Z_{1}-Z_{3}\right)^{2}\right] & =(1 / 3)\left[2 Z_{1}^{2}+2 Z_{2}^{2}+2 Z_{3}^{2}-2 Z_{1} Z_{2}-2 Z_{2} Z_{3}-2 Z_{1} Z_{3}\right] \\
& =(1 / 3)\left[3\left(Z_{1}^{2}+Z_{2}^{2}+Z_{3}^{2}\right)-\left(Z_{1}+Z_{2}+Z_{3}\right)^{2}\right] \\
& =\sum_{i=1}^{3} Z_{i}^{2}-\left(3 \bar{Z}_{3}\right)^{2} / 3 \\
& =\sum_{i=1}^{3} Z_{i}^{2}-3 \bar{Z}_{3}^{2} \\
& =\sum_{i=1}^{3}\left(Z_{i}-\bar{Z}_{3}\right)^{2},
\end{aligned}
$$

which follows a χ_{2}^{2} distribution.
(b) Give
i. $\operatorname{Cov}\left(Z_{1}+Z_{2}, Z_{1}-Z_{2}\right)$

We obtain $\operatorname{Cov}\left(Z_{1}+Z_{2}, Z_{1}-Z_{2}\right)=0$, since $1(1)+1(-1)=0$
ii. $\operatorname{Cov}\left(Z_{1}+Z_{2}+Z_{3}+Z_{4}, Z_{1}-Z_{2}+Z_{3}-Z_{4}\right)$

We obtain $\operatorname{Cov}\left(Z_{1}+Z_{2}+Z_{3}+Z_{4}, Z_{1}-Z_{2}+Z_{3}-Z_{4}\right)=0$, since $1(1)+1(-1)+1(1)+1(-1)=0$

