STAT 712 fa 2022 Final Exam

1. For $n \geq 1$, let X_{1}, \ldots, X_{n} be iid with $\operatorname{mgf} M_{X}(t)=(1-t / 3)^{-\alpha}$ for $t<3$ for some $\alpha>0$.
(a) Find constants a and b such that $\sqrt{n}\left(\bar{X}_{n}-a\right) \xrightarrow{\mathrm{D}} \operatorname{Normal}(0, b)$ as $n \rightarrow \infty$.
(b) Find constants c and d such that $\sqrt{n}\left(\log \bar{X}_{n}-c\right) \xrightarrow{\mathrm{D}} \operatorname{Normal}(0, d)$ as $n \rightarrow \infty$.
(c) Find a function $\hat{\alpha}_{n}$ of X_{1}, \ldots, X_{n} such that $\hat{\alpha}_{n} \xrightarrow{p} \alpha$. Prove the convergence.
2. For $n \geq 1$, let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Uniform}(0,1 / \theta)$, for some $\theta>0$.
(a) Find the pdf of $Y_{n}=1 / X_{(n)}$.

Recall that the cdf of the largest order statistic is the population cdf raised to the power n.
(b) Show that $Y_{n} \xrightarrow{p} \theta$ as $n \rightarrow \infty$.
3. Let (X, Y) have joint pdf given by $f(x, y)=2 \beta x^{\beta-3} y^{-(\beta+1)} \mathbf{1}(1<x<y)$ for some $\beta>1$.
(a) Find the marginal pdf of X.
(b) Give a transformation g such that $g(U) \stackrel{d}{=} X$, where $U \sim \operatorname{Uniform}(0,1)$.
(c) Find the conditional pdf of $Y \mid X=x$.
(d) Give $\mathbb{E} Y$.
4. Let (Y, D) be a pair of random variables such that

$$
\begin{gathered}
Y \left\lvert\, D=d \sim f(y \mid d)=\frac{2}{d \pi} \frac{1}{1+(y / d)^{2}} \cdot \mathbf{1}(-d<y<d)\right. \\
D \sim f_{D}(d)=2 d \cdot \mathbf{1}(0<d<1)
\end{gathered}
$$

(a) Give $\operatorname{Corr}(Y, D)$.
(b) Write down an integral expression which will yield the marginal pdf of Y. Give the support of Y.
(c) Let (U, V) be the random variables $U=Y / D$ and $V=D$. Find the joint pdf of (U, V).
(d) Give $\operatorname{Cov}(U, V)$.

