STAT 712 fa 2022 Final Exam

1. For $n \geq 1$, let X_{1}, \ldots, X_{n} be iid with $\operatorname{mgf} M_{X}(t)=(1-t / 3)^{-\alpha}$ for $t<3$ for some $\alpha>0$.
(a) Find constants a and b such that $\sqrt{n}\left(\bar{X}_{n}-a\right) \xrightarrow{\mathrm{D}} \operatorname{Normal}(0, b)$ as $n \rightarrow \infty$.

For a rv X with mgf M_{X}, we have $\mathbb{E} X=\alpha / 3$ and $\operatorname{Var} X=\alpha / 9$. The central limit theorem therefore gives $\sqrt{n}\left(\bar{X}_{n}-\alpha / 3\right) \xrightarrow{\mathrm{D}} \operatorname{Normal}(0, \alpha / 9)$, so

$$
a=\alpha / 3 \quad \text { and } \quad b=\alpha / 9
$$

(b) Find constants c and d such that $\sqrt{n}\left(\log \bar{X}_{n}-c\right) \xrightarrow{\mathrm{D}} \operatorname{Normal}(0, d)$ as $n \rightarrow \infty$.

Beginning with the result in the previous part and applying the delta method under the function $g(x)=\log x$, where $g^{\prime}(x)=1 / x$, gives $\sqrt{n}\left(\log \bar{X}_{n}-\log (\alpha / 3)\right) \xrightarrow{\mathrm{D}} \operatorname{Normal}\left(0,[1 /(\alpha / 3)]^{2} \cdot \alpha / 9\right)$, so that

$$
c=\log (\alpha / 3) \quad \text { and } \quad d=[1 /(\alpha / 3)]^{2} \cdot \alpha / 9=1 / \alpha .
$$

(c) Find a function $\hat{\alpha}_{n}$ of X_{1}, \ldots, X_{n} such that $\hat{\alpha}_{n} \xrightarrow{p} \alpha$. Prove the convergence.

The WLLN gives $\bar{X}_{n} \xrightarrow{p} \alpha / 3$, so we can set $\hat{\alpha}_{n}=3 \bar{X}_{n}$. To prove $\hat{\alpha}_{n} \xrightarrow{p} \alpha$ as $n \rightarrow \infty$ note that for each $\varepsilon>0$ we have

$$
P\left(\left|\hat{\alpha}_{n}-\alpha\right|<\varepsilon\right)=P\left(\left|3 \bar{X}_{n}-\alpha\right|<\varepsilon\right)=P\left(\left|\bar{X}_{n}-\alpha / 3\right|<\varepsilon / 3\right) \rightarrow 0
$$

as $n \rightarrow \infty$.
2. For $n \geq 1$, let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} \operatorname{Uniform}(0,1 / \theta)$, for some $\theta>0$.
(a) Find the pdf of $Y_{n}=1 / X_{(n)}$.

Recall that the cdf of the largest order statistic is the population cdf raised to the power n.
The cdf of the Uniform $(0,1 / \theta)$ distribution is given by $F_{X}(x)=x \theta$ for $0<x<1 / \theta$, so the cdf of $X_{(n)}$ is given by

$$
F_{X_{(n)}}(x)=P\left(X_{(n)} \leq x\right)=P\left(\text { all of } X_{1}, \ldots, X_{n} \text { are } \leq x\right)=\left[F_{X}(x)\right]^{n}=(x \theta)^{n}
$$

for $0<x<1 / \theta$. The random variable $Y_{n}=1 / X_{(n)}$ has support on (θ, ∞), with cdf given by

$$
P\left(Y_{n} \leq y\right)=P\left(1 / X_{(n)} \leq y\right)=P\left(1 / y \leq X_{(n)}\right)=1-P\left(X_{(n)}<1 / y\right)=1-(\theta / y)^{n}
$$

for $\theta<y<\infty$. Now the pdf of Y_{n} is given by

$$
f_{Y_{n}}(y)=\frac{d}{d y} F_{Y_{n}}(y)=\frac{n \theta^{n}}{y^{n+1}}
$$

for $\theta<y<\infty$.
(b) Show that $Y_{n} \xrightarrow{p} \theta$ as $n \rightarrow \infty$.

For any $\varepsilon>0$ we have

$$
\begin{aligned}
P\left(\left|Y_{n}-\theta\right|<\varepsilon\right) & =P\left(\theta-\varepsilon<Y_{n}<\theta+\varepsilon\right) \\
& =\int_{\theta-\varepsilon}^{\theta+\varepsilon} \frac{n \theta^{n}}{y^{n+1}} \mathbf{1}(y>\theta) d y \\
& =\int_{\theta}^{\theta+\varepsilon} \frac{n \theta^{n}}{y^{n+1}} d y \\
& =-\left.\frac{\theta^{n}}{y^{n}}\right|_{\theta} ^{\theta+\varepsilon} \\
& =1-\left(\frac{\theta}{\theta+\varepsilon}\right)^{n}
\end{aligned}
$$

which limits to 1 as $n \rightarrow \infty$, so $Y_{n} \xrightarrow{p} \theta$.
3. Let (X, Y) have joint pdf given by $f(x, y)=2 \beta x^{\beta-3} y^{-(\beta+1)} \mathbf{1}(1<x<y)$ for some $\beta>1$.
(a) Find the marginal pdf of X.

The support of X is $(1, \infty)$. For each $x \in(1, \infty)$ the marginal pdf of X is given by

$$
\begin{aligned}
f_{X}(x) & =\int_{x}^{\infty} 2 \beta x^{\beta-3} y^{-(\beta+1)} d y \\
& =\left.2 \beta x^{\beta-3}\left[\frac{y^{-(\beta+1)+1}}{-(\beta+1)+1}\right]\right|_{x} ^{\infty} \\
& =2 \beta x^{\beta-3}\left[0-\frac{x^{-\beta}}{-\beta}\right] \\
& =2 x^{-3}
\end{aligned}
$$

(b) Give a transformation g such that $g(U) \stackrel{d}{=} X$, where $U \sim \operatorname{Uniform}(0,1)$.

The probability integral transform gives $Q_{X}(U) \stackrel{d}{=} X$, where Q_{X} is the quantile function of X.
The cdf of X is given by

$$
F_{X}(x)=\int_{1}^{x} 2 t^{-3} d t=\left.2\left[\frac{t^{-2}}{-2}\right]\right|_{1} ^{x}=1-\frac{1}{x^{2}}
$$

for $x \in(1, \infty)$. We have

$$
u=1-\frac{1}{x^{2}} \Longleftrightarrow x=\sqrt{\frac{1}{1-u}},
$$

so the quantile function of X is $Q_{X}(u)=\sqrt{1 /(1-u)}$.
(c) Find the conditional pdf of $Y \mid X=x$.

The support of $Y \mid X=x$ is (x, ∞). For each $x \in(1, \infty)$, we have

$$
f(y \mid x)=\frac{2 \beta x^{\beta-3} y^{-(\beta+1)}}{2 x^{-3}} \mathbf{1}(y>x)=\frac{\beta x^{\beta}}{y^{\beta+1}} \mathbf{1}(y>x) .
$$

(d) Give $\mathbb{E} Y$.

The iterated expectation formula gives $\mathbb{E} Y=\mathbb{E}(\mathbb{E}[Y \mid X])$, where

$$
\mathbb{E}[Y \mid X=x]=\int_{x}^{\infty} y \cdot \frac{\beta x^{\beta}}{y^{\beta+1}} d y=\left.\beta x^{\beta}\left[\frac{y^{-\beta+1}}{-\beta+1}\right]\right|_{x} ^{\infty}=\beta x^{\beta}\left[0-\frac{x^{-\beta+1}}{-\beta+1}\right]=\frac{x \beta}{\beta-1} .
$$

In addition

$$
\mathbb{E} X=\int_{1}^{\infty} x \cdot 2 x^{-3} d x=\left.2\left[-x^{-1}\right]\right|_{1} ^{\infty}=2
$$

so we have

$$
\mathbb{E} Y=\mathbb{E}(\mathbb{E}[Y \mid X])=\mathbb{E}\left(\frac{X \beta}{\beta-1}\right)=\frac{2 \beta}{\beta-1}
$$

4. Let (Y, D) be a pair of random variables such that

$$
\begin{aligned}
Y \mid D=d & \sim f(y \mid d)=\frac{2}{d \pi} \frac{1}{1+(y / d)^{2}} \cdot \mathbf{1}(-d<y<d) \\
D & \sim f_{D}(d)=2 d \cdot \mathbf{1}(0<d<1)
\end{aligned}
$$

(a) Give $\operatorname{Corr}(Y, D)$.

We have $\operatorname{Cov}(Y, D)=\mathbb{E} Y D-\mathbb{E} Y \mathbb{E} D$. Note that for each $d \in(0,1)$, the pdf of $Y \mid D=d$ is symmetric around 0 , so $\mathbb{E}[Y \mid D]=0$. Therefore $\mathbb{E} Y=\mathbb{E}(\mathbb{E}[Y \mid D])=\mathbb{E}(0)=0$. Now

$$
\mathbb{E} Y D=\mathbb{E}(\mathbb{E}[Y D \mid D])=\mathbb{E}(D \mathbb{E}[Y \mid D])=\mathbb{E}(D \cdot 0)=0
$$

so $\operatorname{Cov}(Y, D)=0$ and $\operatorname{Corr}(Y, D)=0$.
(b) Write down an integral expression which will yield the marginal pdf of Y. Give the support of Y.

The support of Y is $(-1,1)$. For each $y \in(-1,1)$ the marginal pdf of Y is given by

$$
f_{Y}(y)=\int_{|y|}^{1} \frac{4}{\pi} \frac{1}{1+(y / d)} d d
$$

The integral is a little tricky. If you evaluate it you get

$$
\begin{aligned}
f_{Y}(y) & =\int_{|y|}^{1} \frac{4}{\pi} \frac{1}{1+(y / d)} d d \\
& =\left.\frac{4}{\pi}\left[d-y \tan ^{-1}(d / y)\right]\right|_{|y|} ^{1} \\
& =\frac{4}{\pi}\left[\left(1-y \tan ^{-1}(1 / y)\right)-\left.\left(|y|-y \tan ^{-1}(|y| / y)\right]\right|_{|y|} ^{1}\right.
\end{aligned} \begin{array}{lll}
\frac{4}{\pi}\left[1-y(1-\pi / 4)-y \tan ^{-1}(1 / y)\right], & y>0 \\
\frac{4}{\pi}\left[1+y(1-\pi / 4)-y \tan ^{-1}(1 / y)\right], & y<0 \\
\frac{4}{\pi}, & y=0 .
\end{array}
$$

(c) Let (U, V) be the random variables $U=Y / D$ and $V=D$. Find the joint pdf of (U, V).

Firstly, the joint support of (U, V) is $(-1,1) \times(0,1)$. Now we have

$$
\begin{aligned}
& u=y / d=: g_{1}(y, d) \\
& v=d=: g_{2}(y, d)
\end{aligned} \Longleftrightarrow \quad \begin{aligned}
& y=u v=: g_{1}^{-1}(u, v) \\
& d=v=: g_{2}^{-1}(u, v)
\end{aligned}
$$

with Jacobian

$$
J(u, v,)=\left|\begin{array}{ll}
\frac{d}{d u} u v & \frac{d}{d v} u v \\
\frac{d}{d u} v & \frac{d}{d v} v
\end{array}\right|=\left|\begin{array}{cc}
v & u \\
0 & 1
\end{array}\right|=v
$$

So the joint pdf of (U, V) is given by

$$
f(u, v)=\frac{4}{\pi} \frac{1}{1+u^{2}} \cdot v \cdot \mathbf{1}(-1<u<1,0<v<1) .
$$

(d) Give $\operatorname{Cov}(U, V)$.

Since the joint pdf of (U, V) can be factored into the product of a function of u and a function of v, the random variables U and V are independent. Therefore $\operatorname{Cov}(U, V)=0$.

