STAT 712 hw 1

Set theory, probability axioms, counting
Do problems $1.2,1.3,1.8,1.10,1.11,1.12,1.13,1.14,1.18,1.19,1.23$ from CB. In addition:

1. For a collection of sets $A_{1}, \ldots, A_{n}, n \geq 2$, we have

$$
\begin{array}{rl}
P\left(\cup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} & P\left(A_{i}\right)-\sum_{1 \leq i_{1}<i_{2} \leq n} P\left(A_{i_{1}} \cap A_{i_{2}}\right) \\
& +\sum_{1 \leq i_{1}<i_{2}<i_{3} \leq n} \sum_{i} P\left(A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}\right)-\cdots+(-1)^{n+1} P\left(\cap_{i=1}^{n} A_{i}\right) .
\end{array}
$$

This is known as the inclusion-exclusion principle.
(a) Prove this result by induction. That is, prove it for $n=2$ and then show that if it is true for an arbitrary $n \geq 2$, it must be true for $n+1$.
(b) Suppose n guests take n seats around a table at random. Then the host rearranges them according to a seating chart he made before the guests' arrival.
i. Find the probability that every guest must move to a different seat. Hint: Let A_{i} be the event that guest i sits in his or her assigned seat for $i=1, \ldots, n$.
ii. Find the limit of this probability as $n \rightarrow \infty$.
(c) Two 52-card decks are shuffled and place side-by-side. From each deck a card is drawn and placed face-up. This is repeated 52 times, resulting in 52 pairs of cards drawn. What is the probability that at least one pair is a match?

