
STAT 712 hw 1
Set theory, probability axioms, counting

Do problems 1.2, 1.3, 1.8, 1.10, 1.11, 1.12, 1.13, 1.14, 1.18, 1.19, 1.23 from CB. In addition:

1. For a collection of sets A1, . . . , An, n ≥ 2, we have

P (∪ni=1Ai) =
n∑

i=1

P (Ai)−
∑∑
1≤i1<i2≤n

P (Ai1 ∩ Ai2)

+
∑∑∑
1≤i1<i2<i3≤n

P (Ai1 ∩ Ai2 ∩ Ai3)− · · ·+ (−1)n+1P (∩ni=1Ai).

This is known as the inclusion-exclusion principle.

(a) Prove this result by induction. That is, prove it for n = 2 and then show that if it is true for
an arbitrary n ≥ 2, it must be true for n + 1.

We have proven the base case in class: P (A1 ∪A2) = P (A1) + P (A2)− P (A1 ∩A2). Now,
assuming the formula holds for n, we write

P (∪n+1
i=1 Ai) = P (∪ni=1Ai ∪ An+1)

= P (∪ni=1Ai) + P (An+1)− P ((∪ni=1Ai) ∩ An+1)

= P (∪ni=1Ai) + P (An+1)− P (∪ni=1(Ai ∩ An+1)),

using the n = 2 result. Now we apply the inclusion-exclusion formula for an arbitrary n to



the first and the third term of the above. This gives

P (∪n+1
i=1 Ai) =

n∑
i=1

P (Ai)−
∑∑
1≤i1<i2≤n

P (Ai1 ∩ Ai2) +
∑∑∑
1≤i1<i2<i3≤n

P (Ai1 ∩ Ai2 ∩ Ai3)− . . .

+ (−1)n+1P (∩ni=1Ai) + P (An+1)

−

[
n∑

i=1

P (Ai ∩ An+1)−
∑∑

1≤i1<i2≤n+1

P (Ai1 ∩ Ai2 ∩ An+1)

+
∑∑∑
1≤i1<i2<i3≤n

P (Ai1 ∩ Ai2 ∩ Ai3 ∩ An+1)

+(−1)n
∑
· · ·
∑

1≤i1<···<in−1≤n

P (Ai1 ∩ · · · ∩ Ain−1 ∩ An+1) + (−1)n+1P (∩ni=1(Ai ∩ An+1))


=

[
n∑

i=1

P (Ai) + P (An+1)

]
−

[∑∑
1≤i1<i2≤n

P (Ai1 ∩ Ai2)−
n∑

i=1

P (Ai ∩ An+1)

]

+

[∑∑∑
1≤i1<i2<i3≤n

P (Ai1 ∩ Ai2 ∩ Ai3) +
∑∑

1≤i1<i2≤n+1

P (Ai1 ∩ Ai2 ∩ An+1)

]
−

· · ·+

(−1)n
∑
· · ·
∑

1≤i1<···<in−1≤n

P (Ai1 ∩ · · · ∩ Ain−1 ∩ An+1) + (−1)n+1P (∩ni=1Ai)


+ (−1)n+2P (∩n+1

i=1 Ai)

We see that we can match terms as in the sets of square brackets above and simplify. This
gives the result:

P (∪n+1
i=1 Ai) =

n+1∑
i=1

P (Ai)−
∑∑

1≤i1<i2≤n+1

P (Ai1 ∩ Ai2)

+
∑∑∑

1≤i1<i2<i3≤n+1

P (Ai1 ∩ Ai2 ∩ Ai3)− · · ·+ (−1)n+2P (∩n+1
i=1 Ai).

(b) Suppose n guests take n seats around a table at random. Then the host rearranges them
according to a seating chart he made before the guests’ arrival.

i. Find the probability that every guest must move to a different seat. Hint: Let Ai be the
event that guest i sits in his or her assigned seat for i = 1, . . . , n.

Letting Ai be the event that guest i sits in his or her assigned seat for i = 1, . . . , n,
the event that every guest must move to a different seat is the event ∩ni=1A

c
i , which by

De Morgan’s Laws is the event (∪ni=1Ai)
c. We can find P (∪ni=1Ai) using the inclusion-
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exclusion principle and subtract this from 1 to get the final answer. Noting that there
are n! possible seating arrangements, we have

P (Ai) = (n− 1)!/n! (Put guest i in correct seat; arrange others.)

P (Ai ∩ Aj) = (n− 2)!/n! (Put guests i and j in correct seats; arrange others.)

...

P (Ai1 ∩ · · · ∩ Aim) = (n−m)!/n! (Put guests i1, . . . , im in correct seats; arrange others.)

So we have

P (∪ni=1Ai) =
n∑

i=1

(n− 1)!

n!
−
∑∑
1≤i1<i2≤n

(n− 2)!

n!
+
∑∑∑
1≤i1<i2<i3≤n

(n− 3)!

n!
− · · ·+ (−1)n+1 1

n!

= n
(n− 1)!

n!
−
(
n

2

)
(n− 2)!

n!
+

(
n

3

)
(n− 3)!

n!
− · · ·+ (−1)n+1 1

n!

= 1− 1

2!
+

1

3!
− · · ·+ (−1)n+1 1

n!

=
n∑

i=1

(−1)i+1 1

i!

So the answer is

P (∩n
i=1A

c
i) = 1−

n∑
i=1

(−1)i+1 1

i!
.

ii. Find the limit of this probability as n→∞.

We find that

lim
n→∞

n∑
i=1

(−1)i+1 1

i!
= 1− e−1

by considering the Taylor expansion of the function e−x around x = 0. So we have

lim
n→∞

P (∩ni=1A
c
i) = 1− lim

n→∞

n∑
i=1

(−1)i+1 1

i!
= e−1 = 0.3678794.

(c) Two 52-card decks are shuffled and place side-by-side. From each deck a card is drawn and
placed face-up. This is repeated 52 times, resulting in 52 pairs of cards drawn. What is the
probability that at least one pair is a match?
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Letting Ai be the event that the ith pair is a match, we have

P (Ai) =
52 · 51! · 51!

52! · 52!
=

1

52

P (Ai ∩ Aj) =
52 · 51 · 50! · 50!

52! · 52!
=

(52− 2)!

52!

P (Ai ∩ Aj ∩ Ak) =
52 · 51 · 50 · 49! · 49!

52! · 52!
=

(52− 3)!

52!
...

P (Ai1 ∩ · · · ∩ Aim) =
(52−m)!

52!
.

To obtain the expression for P (Ai), we divide the number of ways in which flip i can be a
match by the total number of ways in which the cards in the two decks can be arranged.
The latter is 52! · 52!. The former is obtained by considering that to arrange for a match
on the ith flip, we can place any of the 52 cards in position i of the deck (52 ways to do
this), rearranging the rest of the cards in any way (51!, and then placing the same card of
the other deck in position i and arranging the rest of the cards in any way (51! ways to do
this). So the numerator is 52 · 51! · 51!.

We obtain the expression for P (Ai ∩ Aj) similarly: There are 52 ways to choose a card to
place in position i of the first deck and then 51 ways to choose a card to place in position j
of the first deck. Then there are 50! ways to arrange in rest of the cards. Then after placing
the same cards in positions i and j in the second deck, there are 50! ways to arrange the
rest of the cards in the second deck. So the numerator is 52 · 51 · 50! · 50!

Now, by the inclusion-exclusion principle, we have

P (∪52i=1Ai) =
52∑

m=1

(−1)m+1

(
52

m

)
(52−m)!

52!

=
52∑

m=1

(−1)m+1 1

m!

= 0.6321206.
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Problems 1.3 1.11 1 12lb 1.14 1.18 1.23 from CB

G ProfofAUB BUA We have

XEAUB KEA or KEB XE BUA

µ µ µ

E BUA KEB or KGA x EAUB

so BUA LAUB Therefore

AUB BUA

ProfofAMBBAI We kam

XE AND EA and KEB XE BAA

so AAB C BIA Also

XE BAA KEB and KEA XE AAB

so BAA C AMB Therefore

AAB BIA

b ProfofAUCBudLAUBI We han

x t AU BUC XEA or XE BUL

KEA on KEB o KEC

cALU or at C



c ALB OL

so Au Buc C AUBUL Also

XE AluB UC XE AUB or XE

A o x GB or KEC

A o XE C

E AU Buc

so LAUB UCC AU BUC Therefore

A UC Au Buc

ProfofAMCBAC AMBIC We kam

e An c a EA and EBC

EA and KEB and KEC

XE B and Tec

E A ne

so An BAC G 1C Also

e AGB ne eAGB and nee

EA and AGB and tel



Xt A and XE Bn

c An Bn

so A AC C An Bn Therefore

A ne Anland

C ProfoffvBIEAnBI We kam

LAUB xd Aus

A and X B

e Ä and KEB

e ÄnB

so LAUB Ani Also

AUB XE A and KEB

YA and a B

AUB

E LAUB

so ÄAB CLAUB Therefore

LAUB Anti



ProfofCAMBJEACUB

weh.mxe AGB x Ans

X E Al or XE B

E A UB

so CANBY CÄUB Also

E ÄUB x EA or E B

AAB

E B

so ÄUB An Therefor

A AUS

Here is the proof of the distributive laws too

ProotofAMBUCJ BUACDWeh.am

x An Bu x EA and Xt BUC

XE A and KEB

on EA ad x EC



XE AND or XE Anc

Xe B o Anc

so An Buc C ABU Anc Also

A u An XE Anis or XE Anc

XE A and XE BUC

e AU BUC

so A ULAN An Bu

ProfofAULBAD ALUD E.ve hau

E AU Bnl EA or a E Bnc

AUB and xe Auc

Xe UB n AUC

so Au Bnc Alu n Au Also

XE LAUB 1 AUC x EA or XE BAC

EA or XE Bnc

E AU Bne

so CtuB n AUC C Au Bn Therefore



Au Bne B n Auc

het S be a sample space

Show tht B 0,53 is a sigma algebra

2 0GB
Iii

2 AGB JEB

We kam

2 0GB

2 O SEB SEOEB and

3 dus S E B

so B is a o algebra

b het B all subsets of S includingS itself

We han 2 d is the subset of S containing no elements of S
h DEB

2 For A e B Acs

Then A SIA CS so ÄE B

3 For A tn EB A An es so
c
A CS

This means UA EB



het B and Be be r algebra on S

We have 2 Sinn B and Bz am both G algebras

EB and do Be so

E Bin Bz

2 het A E B n Bz Then AaB and Aeße
Then A e B and A eBz So

Alt Bin Be

3 ht A An E BinBe

Then A Az EB and A Az E Be

Therefore AmEB and An Bz so

An E BenBz

So Bin Bz is a o algebra



b show that finite additivity continuity countable additivity

t continuity

If An Anti is a decreasing sog ht 1in An then dig PIA O
ung

het BeBe be paris disjoint Wa wat to show PC EPCB

Defim B LEBn

remainder

i iää
B

Then B Y B u Rn
D

disjoint

PCB E PCB PCR Y na

by finite additivity Now if Lin Rn so then hin PCR so so that

PCB E EPCB PIR EPCB
which is the axiom of countable additivity

Now lets show 1in Rn d we how
not

lineup Rn 1 Uin Rnnsg



I Rn

BILEB

Essl B

Ä Bnl
ne

B n Ä A B

B I WEN Anal WEB Kien

B I WER Ana WEB

Bn ein
D n E B

B I B

him if Rn In Rn U hirn eidund

Rustis work above



of subsets that can be made from sample spee of n

sample point is 2

For each of the n sample points decide whether to
include it or not n tasks 2 ways to do each one

The job can be done in 2 ways

Plan n balls ist n cells What is the probability
that exactly 2 all empty

ir
For each of the n bells you can choose any of n

alls Job can be done in n ways

IP on all empty then of the remaining cells one
has two balls and the most have one hell

wastasks
choose empty all n

choose all tohave
to hell

I ja
chrom twoballs to

ß

choose bell for Ist n 2
remaining all

2nd

2 th I

was tu du job n.tn i 2 e 2 I E h

P exactly a al ent Mit



i Two people toss coin n times Find the probability
that they get the sam of heads

sequences of n coin tosses 2 2 4

was each get i had C C

So ways to get sum heads in

ü

PC Sam number had FYI
Can on the cool identity E 4 Y which we can
he by writing

Ätna E D E.it

Ex L
E E

ipolynomie

HÄ x E x Y t
in

x term in polynomial

s i E 1 E H


