STAT 712 hw 1

Set theory, probability axioms, counting
Do problems $1.2,1.3,1.8,1.10,1.11,1.12,1.13,1.14,1.18,1.19,1.23$ from CB. In addition:

1. For a collection of sets $A_{1}, \ldots, A_{n}, n \geq 2$, we have

$$
\begin{array}{rl}
P\left(\cup_{i=1}^{n} A_{i}\right)=\sum_{i=1}^{n} & P\left(A_{i}\right)-\sum_{1 \leq i_{1}<i_{2} \leq n} P\left(A_{i_{1}} \cap A_{i_{2}}\right) \\
& +\sum_{1 \leq i_{1}<i_{2}<i_{3} \leq n} \sum_{i} P\left(A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}\right)-\cdots+(-1)^{n+1} P\left(\cap_{i=1}^{n} A_{i}\right) .
\end{array}
$$

This is known as the inclusion-exclusion principle.
(a) Prove this result by induction. That is, prove it for $n=2$ and then show that if it is true for an arbitrary $n \geq 2$, it must be true for $n+1$.

We have proven the base case in class: $P\left(A_{1} \cup A_{2}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)-P\left(A_{1} \cap A_{2}\right)$. Now, assuming the formula holds for n, we write

$$
\begin{aligned}
P\left(\cup_{i=1}^{n+1} A_{i}\right) & =P\left(\cup_{i=1}^{n} A_{i} \cup A_{n+1}\right) \\
& =P\left(\cup_{i=1}^{n} A_{i}\right)+P\left(A_{n+1}\right)-P\left(\left(\cup_{i=1}^{n} A_{i}\right) \cap A_{n+1}\right) \\
& =P\left(\cup_{i=1}^{n} A_{i}\right)+P\left(A_{n+1}\right)-P\left(\cup_{i=1}^{n}\left(A_{i} \cap A_{n+1}\right)\right),
\end{aligned}
$$

using the $n=2$ result. Now we apply the inclusion-exclusion formula for an arbitrary n to
the first and the third term of the above. This gives

$$
\begin{aligned}
P\left(\cup_{i=1}^{n+1} A_{i}\right)= & \sum_{i=1}^{n} P\left(A_{i}\right)-\sum_{1 \leq i_{1}<i_{2} \leq n} \sum_{1} P\left(A_{i_{1}} \cap A_{i_{2}}\right)+\sum_{1 \leq i_{1}<i_{2}<i_{3} \leq n} \sum_{n} P\left(A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}\right)-\ldots \\
& +(-1)^{n+1} P\left(\cap_{i=1}^{n} A_{i}\right)+P\left(A_{n+1}\right) \\
& -\left[\sum_{i=1}^{n} P\left(A_{i} \cap A_{n+1}\right)-\sum_{1 \leq i_{1}<i_{2} \leq n+1} \sum_{1 \leq i_{1}<i_{2}<i_{3} \leq n} P\left(A_{i_{1}} \cap A_{i_{2}} \cap A_{n+1}\right)\right. \\
& \left.+\sum_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}} \cap A_{n+1}\right) \\
& \left.+(-1)^{n} \sum_{1 \leq i_{1}<\cdots<i_{n-1} \leq n} \cdots \sum_{1 \leq 1} P\left(A_{i_{1}} \cap \cdots \cap A_{i_{n-1}} \cap A_{n+1}\right)+(-1)^{n+1} P\left(\cap_{i=1}^{n}\left(A_{i} \cap A_{n+1}\right)\right)\right] \\
= & {\left[\sum_{i=1}^{n} P\left(A_{i}\right)+P\left(A_{n+1}\right)\right]-\left[\sum_{1 \leq i_{1}<i_{2} \leq n} P\left(A_{i_{1}} \cap A_{i_{2}}\right)-\sum_{i=1}^{n} P\left(A_{i} \cap A_{n+1}\right)\right] } \\
& +\left[\sum_{1 \leq i_{1}<i_{2}<i_{3} \leq n} P\left(A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}\right)+\sum_{1 \leq i_{1}<i_{2} \leq n+1} \sum_{1} P\left(A_{i_{1}} \cap A_{i_{2}} \cap A_{n+1}\right)\right]- \\
& \cdots+\left[(-1)^{n} \sum_{1 \leq i_{1}<\cdots<i_{n-1} \leq n} \cdots\left(A_{i_{1}} \cap \cdots \cap A_{i_{n-1}} \cap A_{n+1}\right)+(-1)^{n+1} P\left(\cap_{i=1}^{n} A_{i}\right)\right] \\
& +(-1)^{n+2} P\left(\cap_{i=1}^{n+1} A_{i}\right)
\end{aligned}
$$

We see that we can match terms as in the sets of square brackets above and simplify. This gives the result:

$$
\begin{array}{rl}
P\left(\cup_{i=1}^{n+1} A_{i}\right)=\sum_{i=1}^{n+1} & P\left(A_{i}\right)-\sum_{1 \leq i_{1}<i_{2} \leq n+1} P\left(A_{i_{1}} \cap A_{i_{2}}\right) \\
& +\sum_{1 \leq i_{1}<i_{2}<i_{3} \leq n+1} \sum_{i} P\left(A_{i_{1}} \cap A_{i_{2}} \cap A_{i_{3}}\right)-\cdots+(-1)^{n+2} P\left(\cap_{i=1}^{n+1} A_{i}\right) .
\end{array}
$$

(b) Suppose n guests take n seats around a table at random. Then the host rearranges them according to a seating chart he made before the guests' arrival.
i. Find the probability that every guest must move to a different seat. Hint: Let A_{i} be the event that guest i sits in his or her assigned seat for $i=1, \ldots, n$.

Letting A_{i} be the event that guest i sits in his or her assigned seat for $i=1, \ldots, n$, the event that every guest must move to a different seat is the event $\cap_{i=1}^{n} A_{i}^{c}$, which by De Morgan's Laws is the event $\left(\cup_{i=1}^{n} A_{i}\right)^{c}$. We can find $P\left(\cup_{i=1}^{n} A_{i}\right)$ using the inclusion-
exclusion principle and subtract this from 1 to get the final answer. Noting that there are n ! possible seating arrangements, we have

$$
\begin{aligned}
P\left(A_{i}\right) & =(n-1)!/ n!\quad \text { (Put guest } i \text { in correct seat; arrange others.) } \\
P\left(A_{i} \cap A_{j}\right) & =(n-2)!/ n!\quad \text { (Put guests } i \text { and } j \text { in correct seats; arrange others.) }
\end{aligned}
$$

$P\left(A_{i_{1}} \cap \cdots \cap A_{i_{m}}\right)=(n-m)!/ n!\quad$ (Put guests i_{1}, \ldots, i_{m} in correct seats; arrange others.)
So we have

$$
\begin{aligned}
P\left(\cup_{i=1}^{n} A_{i}\right) & =\sum_{i=1}^{n} \frac{(n-1)!}{n!}-\sum_{1 \leq i_{1}<i_{2} \leq n} \frac{(n-2)!}{n!}+\sum_{1 \leq i_{1}<i_{2}<i_{3} \leq n} \frac{(n-3)!}{n!}-\cdots+(-1)^{n+1} \frac{1}{n!} \\
& =n \frac{(n-1)!}{n!}-\binom{n}{2} \frac{(n-2)!}{n!}+\binom{n}{3} \frac{(n-3)!}{n!}-\cdots+(-1)^{n+1} \frac{1}{n!} \\
& =1-\frac{1}{2!}+\frac{1}{3!}-\cdots+(-1)^{n+1} \frac{1}{n!} \\
& =\sum_{i=1}^{n}(-1)^{i+1} \frac{1}{i!}
\end{aligned}
$$

So the answer is

$$
P\left(\cap_{i=1}^{n} A_{i}^{c}\right)=1-\sum_{i=1}^{n}(-1)^{i+1} \frac{1}{i!} .
$$

ii. Find the limit of this probability as $n \rightarrow \infty$.

We find that

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n}(-1)^{i+1} \frac{1}{i!}=1-e^{-1}
$$

by considering the Taylor expansion of the function e^{-x} around $x=0$. So we have

$$
\lim _{n \rightarrow \infty} P\left(\cap_{i=1}^{n} A_{i}^{c}\right)=1-\lim _{n \rightarrow \infty} \sum_{i=1}^{n}(-1)^{i+1} \frac{1}{i!}=e^{-1}=0.3678794
$$

(c) Two 52-card decks are shuffled and place side-by-side. From each deck a card is drawn and placed face-up. This is repeated 52 times, resulting in 52 pairs of cards drawn. What is the probability that at least one pair is a match?

Letting A_{i} be the event that the i th pair is a match, we have

$$
\begin{aligned}
P\left(A_{i}\right)= & \frac{52 \cdot 51!\cdot 51!}{52!\cdot 52!}=\frac{1}{52} \\
P\left(A_{i} \cap A_{j}\right)= & \frac{52 \cdot 51 \cdot 50!\cdot 50!}{52!\cdot 52!}=\frac{(52-2)!}{52!} \\
P\left(A_{i} \cap A_{j} \cap A_{k}\right)= & \frac{52 \cdot 51 \cdot 50 \cdot 49!\cdot 49!}{52!\cdot 52!}=\frac{(52-3)!}{52!} \\
& \vdots \\
P\left(A_{i_{1}} \cap \cdots \cap A_{i_{m}}\right)= & \frac{(52-m)!}{52!} .
\end{aligned}
$$

To obtain the expression for $P\left(A_{i}\right)$, we divide the number of ways in which flip i can be a match by the total number of ways in which the cards in the two decks can be arranged. The latter is $52!\cdot 52$!. The former is obtained by considering that to arrange for a match on the i th flip, we can place any of the 52 cards in position i of the deck (52 ways to do this), rearranging the rest of the cards in any way (51!, and then placing the same card of the other deck in position i and arranging the rest of the cards in any way (51! ways to do this). So the numerator is $52 \cdot 51$! $\cdot 51$!.

We obtain the expression for $P\left(A_{i} \cap A_{j}\right)$ similarly: There are 52 ways to choose a card to place in position i of the first deck and then 51 ways to choose a card to place in position j of the first deck. Then there are 50 ! ways to arrange in rest of the cards. Then after placing the same cards in positions i and j in the second deck, there are 50 ! ways to arrange the rest of the cards in the second deck. So the numerator is $52 \cdot 51 \cdot 50!\cdot 50$!

Now, by the inclusion-exclusion principle, we have

$$
\begin{aligned}
P\left(\cup_{i=1}^{52} A_{i}\right) & =\sum_{m=1}^{52}(-1)^{m+1}\binom{52}{m} \frac{(52-m)!}{52!} \\
& =\sum_{m=1}^{52}(-1)^{m+1} \frac{1}{m!} \\
& =0.6321206
\end{aligned}
$$

Problens $1.3,1.11,1.12(6) .1 .14,1.18,1.23$ from $C B$.
11.3 (a) Prof of AUB=BUA: We houn

$$
x \in A \cup B \Rightarrow x \in A \quad x \in B \Rightarrow x \in B \cup A,
$$

su $A \cup B C B U A$. Also

$$
x \in B \cup A \Rightarrow x \in B \quad x \in A \Rightarrow x \in A \cup B,
$$

so buA $C A \cup B$. Thenfore

$$
A \cup B=B \cup A \text {. }
$$

Proof of $A \cap B=B \cap A$: Wh hom

$$
x \in A \cap B \Rightarrow x \in A \text { and } x \in B \Rightarrow x \in B \cap A
$$

so $\quad A \cap B \subset B \cap A$. Also,

$$
x \in B \cap A \Rightarrow x \in B \text { and } x \in A \Rightarrow x \in A \cap B
$$

so $B \cap A \subset A \cap B$. Theatore

$$
A \cap B=B \cap A .
$$

(b) Prouf of $A \cup(B \cup C)=(A \cup B) \cup C:$ We hav

$$
\begin{aligned}
x \in A \cup(B \cup C) & \Rightarrow x \in A \text { or } x \in B \cup C \\
& \Rightarrow x \in A \text { or } x \in B \quad \text {.. } x \in C \\
& \Rightarrow x \in(A \cup B) \text { or } x \in C
\end{aligned}
$$

$$
\Rightarrow x \in(A \cup B) \cup C,
$$

so $A \cup(B \cup C) \subset(A \cup B) \cup C$. Also

$$
\begin{aligned}
x \in(A \cup B) \cup C & \Rightarrow x \in A \cup B \text { or } x \in C \\
& \Rightarrow x \in A \text { or } x \in B \text { or } x \in C \\
& \Rightarrow x \in A \text { or } x \in(B \cup C) \\
& \Rightarrow x \in A \cup(B \cup C),
\end{aligned}
$$

8. $(A \cup B) \cup C \subset A \cup(B \cup C)$. Then fore

$$
(A \cup B) \cup C=A \cup(B \cup C) .
$$

Proof of $A \cap(B \cap C)=(A \cap B) \cap C$: We hew

$$
\begin{aligned}
x \in A \cap(B \cap C) & \Rightarrow x \in A \text { and } x \in(B \cap C) \\
& \Rightarrow x \in A \text { and } x \in B \text { and } x \in C \\
& \Rightarrow x \in(A \cap B) \text { and } x \in C \\
& \Rightarrow x \in(A \cap B) \cap C .
\end{aligned}
$$

so $A \cap(B \cap C) \subset(A \cap B) \cap C$. Also.

$$
\begin{aligned}
x \in(A \cap B) \cap C & \Rightarrow x \in(A \cap B) \text { and } x \in C \\
& \Rightarrow x \in A \text { ad } x \in B \text { and } x \in C
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow x \in A \text { and } x \in(B \cap C) \\
& \Rightarrow x \in A \cap(B \cap C) .
\end{aligned}
$$

so $(A \cap B) \cap \subset \subset A \cap(B \cap C)$. Therefore

$$
(A \cap B) \cap C=A \cap(B \cap C) .
$$

(c) Proof of $(A \cup B)^{2}=A^{C} \cap B^{-}$: We here

$$
\begin{aligned}
x \in(A \cup B)^{c} & \Rightarrow x \notin A \cup B \\
& \Rightarrow x \notin A \text { and } x \notin B \\
& \Rightarrow x \in A^{c} \text { and } x \in B^{c} \\
& \Rightarrow x \in A^{c} \cap B^{c},
\end{aligned}
$$

s. $\quad(A \cup B)^{c}=A^{c} \cap B^{c}$. Also

$$
\begin{aligned}
x \in A^{c} \cap B^{c} & \Rightarrow x \in A^{c} \text { and } x \in B^{c} \\
& \Rightarrow x \notin A \text { ad } x \notin B \\
& \Rightarrow x \notin A \cup B \\
& \Rightarrow x \in(A \cup B)^{c} .
\end{aligned}
$$

so $\quad A^{c} \cap B^{c} \subset(A \cup B)^{c}$. Theodore

$$
(A \cup B)^{c}=A^{c} \cap B^{c} .
$$

Prof of $(A \cap B)^{c}=A^{c} \cup B^{c}$: We how

$$
\begin{aligned}
& x \in(A \cap B)^{c} \Rightarrow x \notin A \cap B \\
& \Rightarrow x \in A^{c} \text { or } x \in B^{c} \\
& \Rightarrow x \in A^{c} \cup B^{c} \\
& \text { so }(A \cap B)^{c} C A^{c} \cup B^{c} . \text { Also } \\
& x \in A^{c} \cup B^{c} \Rightarrow x \in A^{c} \text { or } x \in B^{c} \\
& \Rightarrow x \notin A \cap B \\
& \Rightarrow x \in(A \cap B)^{c},
\end{aligned}
$$

2. $A^{C} \cup B^{C} \Rightarrow(A \cap B)^{c}$. Theodore

$$
(A \cap B)^{c}=A^{c} \cup B^{c} .
$$

Here is the prof of the distributive laws too:

Prof of $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$: We have

$$
\begin{aligned}
x \in A \cap(B \cup C) \quad & x \in A \quad \text { and } x \in B \cup C . \\
\Rightarrow & x \in A \text { ad } x \in B \\
& \quad r \quad x \in A \text { and } x \in C .
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad x \in A \cap B \text { or } x \in A \cap C \\
& \Rightarrow \quad x \in(A \cap B) \cup(A \cap C)
\end{aligned}
$$

so $A \cap(B \cup C) \subset(A \cap B) \cup(A \cap C)$. Aloe,

$$
\begin{aligned}
x \in(A \cap B) \cup(A \cap C) & \Rightarrow x \in A \cap B \text { or } x \in A \cap C \\
& \Rightarrow x \in A \text { and } x \in B \cup C \\
& \Rightarrow x \in A \cup(B \cup C) .
\end{aligned}
$$

so $\quad(A \cap B) \cup(A \cap C) \subset A \cap(B \cup C)$.

Prof of $A \cup(B \cap C)=(A \cup B) \cap(A \cup C):$ We han

$$
\begin{aligned}
x \in A \cup(B \cap C) & \Rightarrow x \in A \text { or } x \in B \cap C \\
& \Rightarrow x \in A \cup B \text { and } x \in A \cup C \\
& \Rightarrow x \in(A \cup B) \cap(A \cup C),
\end{aligned}
$$

so $A \cup(B \cap C) \subset(A \cup B) \cap(A \cup C)$. Also

$$
\begin{aligned}
x \in(A \cup B) \cap(A \cup C) & \Rightarrow x \in A \quad \text { or } \quad x \in B \cap C \\
& \Rightarrow x \in A \quad x \in(B \cap C) \\
& \Rightarrow x \in A \cup(B \cap C) .
\end{aligned}
$$

so $(A \cup B) \cap(A \cup C) \subset A \cup(B \cap C)$.

$$
A \cup(B \cap C)=(A \cup B) \cap(A \cup C) .
$$

1.11 Let S be a sample space.
(a) show that $B=\{\phi, S\}$ is a sigme-dgebr.

Recall: B is a σ-algebim if

1. $\phi \in \mathbb{B}$
2. $A \in B \Rightarrow A^{c} \in B$
3. $A_{1}, A_{2}, \ldots \in B \Rightarrow \bigcup_{i=1}^{\infty} A_{i} \in B$.

We have

1. $\varnothing \in \mathbb{B}$,
2. $\phi^{c}=S \in B, S^{c}=\phi \in B$, and
3. $\phi \cup S=S \in B$,
so B is a σ-algebra.
(b) Lat $B=\left\{\right.$ all selects of S including $\left.S: t_{0} 1 f\right\}$

We han 2. ϕ is the subset of S containing no elements of S, \& $\quad \phi \in B$.
2. For $A \in B, A \subset S$.

Then $A^{c}=S \backslash A \subset S$, so $A^{c} \in B$.
3. For $A_{1}, A_{2}, \ldots \in B, A_{1}, A_{2}, \ldots C$, so $\bigcup_{i=1}^{\infty} A_{i} \subset S$, This means $\bigcup_{i=1}^{\infty} A_{i} \in B$.
(c) Let B_{1} and Q_{2} b $\sigma-1$ igloos on S.

We have 1. Sine $B_{\varphi} B_{1}$ and B_{2} an both σ-dyporos,

$$
\phi \in B_{1} \cap B_{2} .
$$

2. Lat $A \in B_{1} \cap B_{2}$. The $A \in B_{1}$ and $A \in B_{2}$.

Then $A^{c} \in B_{1}$ and $A^{c} \in B_{2}$, so

$$
A^{c} \in B_{1} \cap B_{c} .
$$

3. $L+A_{1}, A_{2}, \ldots \in B_{1} \cap D_{2}$.

Then $A_{1}, A_{2}, \ldots \in B_{1}$ and $A_{1}, A_{2}, \ldots \in B_{2}$.
therefor $\bigcup_{n=1}^{\infty} A_{n} \in B_{1}$ and $\bigcup_{n=1}^{\infty} A_{n} \in B_{2}$, es

$$
\bigcup_{n=1}^{\infty} A_{n} \in B_{1} \cap B_{2} .
$$

so $B_{1} \cap B_{2}$ ib a σ-algebra.
1.12 (b) Show that finite additivity \& contiacity \Rightarrow coontate additivity

Assume (continuity):
If $A_{n} \supset A_{n+1} \supset \ldots$ is a decrasiz sig. sit. $\lim _{n \rightarrow \infty} A_{n}=\varnothing$ then $\lim _{n \rightarrow \infty} p\left(A_{n}\right)=0$.

Let B_{1}, B_{2}, \ldots be poise disjoint. We wat t show $P\left(\bigcup_{n=1}^{\infty} B_{n}\right)=\sum_{n=1}^{\infty} P\left(B_{n}\right)$. Define $\quad B=\bigcup_{n=1}^{\infty} B_{n}$
and $R_{n}=B \backslash\left(\begin{array}{l}n \\ i=1 \\ B_{i}\end{array}\right)$ for $n \geqslant 1$, noting that $R_{n} \supset R_{n+1} \supset \cdots$. "reme.ider"

Then $B=\left(\bigcup_{i=1}^{n} B_{i}\right) \cup R_{n}$
and

$$
P(B)=\sum_{i=1}^{n} P\left(B_{i}\right)+P\left(R_{n}\right) \quad \forall n \geqslant 1
$$

by finite additivity. Nov if $\lim _{n \rightarrow \infty} R_{n}=0$ then $\lim _{n \rightarrow \infty} P\left(R_{n}\right)=0$, a. that

$$
P(B)=\lim _{n \rightarrow \infty}\left[\sum_{i=1}^{n} P\left(B_{i}\right)+P\left(R_{n}\right)\right]=\sum_{n=1}^{\infty} P\left(B_{n}\right) \text {. }
$$

which is the axiom of countable additivity.

Now let's show $\lim _{n \rightarrow \infty} R_{n}=\phi$. We haw

$$
\operatorname{limsip}_{n \rightarrow \infty} R_{n}=\bigcap_{n=1}^{\infty} \bigcup_{R=n}^{\infty} R_{n}
$$

$$
\begin{aligned}
& =\bigcap_{n=1}^{\infty} R_{n} \\
& =\bigcap_{n=1}^{\infty} B \backslash\left(\begin{array}{ll}
\hat{U} & B_{i}
\end{array}\right) \\
& =\bigcap_{n=1}^{\infty} B \cap\left(\bigcup_{i=1}^{n} B_{i}\right)^{n} \\
& =\bigcap_{n=1}^{\infty} B \cap\left(\bigcap_{i=1}^{n} B_{i}^{c}\right) \\
& =B \cap\left(\bigcap_{n=1}^{\infty} \bigcap_{i=1}^{n} B_{i}^{c}\right) \\
& =B \cap\left\{\omega \in \Omega: \forall n \geqslant 0 \quad \omega \in B_{i}^{c} \quad \forall i \leq n\right\} \\
& =B \cap\left\{\omega \in \Omega: \quad \forall n \geqslant 1 \quad \omega \in B_{i}\right\} \\
& =B \cap\left(\bigcap_{n=1}^{\infty} B_{n}^{c}\right) \\
& =B \cap\left(\bigcup_{n=1}^{\infty} B_{n}\right)^{2} \\
& =B \cap B^{c} \\
& =\varnothing \text {. }
\end{aligned}
$$

1.14 of sobocts that con^{n} be made from supple span of n sample point is 2^{n}.

For each of the n sample points, decide uther to recede it or not: n taste, 2 ways t do each one. the job con bo done in 2^{n} ways.
1.18 Play "exactly bolls int 1 call" empty? what is the probability

Fur each of the n bills, you can chook any ot n
cells: job con be dore in n ways If om cell empty, them of the remaining calls, one

teaks	\# was
chron empty all	n
choose cell to hove	$(n-1)$

$$
\binom{n}{2}=\frac{n!}{2!(n-2)!}=\frac{n(n-1)}{2}
$$

churn two bills to plan in double well chook bill for 2^{3+}

$$
n-2
$$

H ways to do job $n \cdot(n-1) \cdot\binom{n}{2}(n-2) \cdot \ldots-1=\binom{n}{2} n$:.

$$
P(\text { exactly } 1 \text { eel empty })=\frac{\binom{n}{2} n!}{n^{n}}
$$

1.23 Tw. people toro cain ${ }^{\text {n }}$ they timese Find the probbebility
\# seguenese of n coir treas: $z^{n} \cdot 2^{n}=y^{n}$.
\# wers eah get i hach $\binom{n}{\vdots}\binom{n}{i}$.
s. \# ways to git sam \# heods is

$$
P(\text { s.om no...br hade })=\frac{\sum_{i=0}^{n}\binom{n}{i}^{2}}{y^{n}}=\binom{n}{i}^{2} .
$$

$$
\begin{aligned}
& (1+x)^{n}(1+x)^{n}=\left(\sum_{i=0}^{n} x^{i}\binom{n}{i}\right)\left(\sum_{j=0}^{n} x^{j}\binom{n}{j}\right) \\
& =\sum_{i=0}^{n} \sum_{j=0}^{n} x^{i} x^{j}\binom{n}{i}\binom{n}{j} \\
& =\ldots+\underbrace{x^{n} \sum_{i=0}^{n}\binom{n}{i}\binom{n}{n-i}}_{x^{n} \text { trem n rolrnen.al }}+\ldots \\
& (1+x)^{2 n}=\sum_{i=0}^{n} x^{i}\binom{2 n}{i}=\cdots+\underbrace{x^{n}\binom{2 n}{n}}_{x^{n} \text { tern } \cdot}+\ldots
\end{aligned}
$$

son $\quad\binom{2 n}{n}=\sum_{i=0}^{n}\binom{n}{i} \underbrace{\left(\begin{array}{l}n \\ i=0\end{array}\right.}_{=\left(\begin{array}{c}n \\ n-i \\ i\end{array}\right)}=n_{n}^{n})^{2}$.

