STAT 712 hw 3

Expected value, variance, mgfs
Do problems 2.14, 2.17, 2.24, 2.26, 2.28, 2.32, 2.38 from CB. In addition:

1. Each of N visitors entering a museum must pass through one of n turnstiles. Suppose each visitor chooses a turnstile at random, independently of the others, and let X_{n} be the number of visitors that enter through turnstile n.
(a) Give the pmf of X_{n}.
(b) Give the $\operatorname{mgf} M_{X_{n}}$ of X_{n}.
(c) For a positive integer k, let $N=k \cdot n$, so that k visitors per turnstile enter, and find $\lim _{n \rightarrow \infty} M_{X_{n}}$.
(d) Give the limiting distribution of X_{n} as $n \rightarrow \infty$ when $N=k \cdot n$.
2. (Optional) A rv X is called b-sub-Gaussian if for some $b>0, \mathbb{E} e^{t X} \leq e^{b^{2} t^{2} / 2}$ for all $t \in \mathbb{R}$.
(a) Show that if X is b-sub-Gaussian, then

$$
P(|X| \geq a) \leq 2 e^{-a^{2} /\left(2 b^{2}\right)} \quad \text { for all } a>0
$$

(b) Show that $X \sim \operatorname{Normal}\left(0, \sigma^{2}\right)$ is a σ-sub-Gaussian rv.
(c) Show that $X \sim \operatorname{Uniform}(-b, b)$ is a b-sub-Gaussian rv.

Hint: Write the mgf of X as an infinite series and use the inequality $(2 k+1)!\geq k!2^{k}$.

