STAT 712 hw 5

Joint and marginal distributions, conditional distributions, independence

Do problems 4.1, 4.9, 4.10, 4.11, 4.15 from CB. In addition:

- 1. A frog will hop across a sidewalk, beginning the dirt on one side and ending in the dirt on the other side. Let X be the number of times the frog lands on the sidewalk while hopping across. Derive the probability mass function of X assuming that the frog's hopping distances are independent and have the exponential distribution with mean $1/\lambda$ and that the sidewalk has width t.
- 2. Let (X, Y) be a pair of random variables with joint pdf given by

$$f(x,y) = \frac{x}{\theta} e^{-x/\theta} \mathbf{1}(0 < y < 1/x, x > 0)$$

for some $\theta > 0$.

- (a) Find $P(1 \le X \le 2, Y \le 1)$.
- (b) Find the marginal pdf f_X of X.
- (c) Find $\mathbb{E}X$.
- (d) Find the marginal pdf f_Y of Y and draw a picture of it when $\theta = 1$ (you may use software). Hint: You will have to do integration by parts.
- (e) Give the conditional pdf f(x|y) of X|Y = y for y = 1 when $\theta = 1$.
- (f) Give the conditional pdf f(y|x) of Y|X = x for x > 0.
- 3. Let (Z_1, Z_2) be a pair of rvs with the standard bivariate Normal distribution with correlation ρ , so that their joint pdf is given by

$$f(z_1, z_2) = \frac{1}{2\pi} \frac{1}{\sqrt{1 - \rho^2}} \exp\left[-\frac{1}{2} \frac{1}{1 - \rho^2} (z_1^2 - 2\rho z_1 z_2 + z_2^2)\right] \quad \text{for all } z_1, z_2 \in \mathbb{R}.$$

- (a) Show that Z_1 and Z_2 are independent if $\rho = 0$.
- (b) Show that the marginal pdf of Z_1 is the Normal(0, 1) distribution.
- (c) Show that $Z_2 | Z_1 = z_1 \sim \text{Normal}(\rho z_1, 1 \rho^2)$.
- 4. Let X have pdf f_X and for some $\tau \in (0,1)$ define the quantile check function as

$$\rho_{\tau}(z) = z(\tau - \mathbf{1}(z < 0)) = \begin{cases} z\tau, & z \ge 0\\ -z(1 - \tau), & z < 0. \end{cases}$$

(a) Show that the τ -quantile q_{τ} of X is equal to the value of a which minimizes $\mathbb{E}\rho_{\tau}(X-a)$. Hint: Set up the integral and differentiate it with respect to a using the rule of Leibniz

$$\frac{d}{dx} \int_{a(x)}^{b(x)} g(x,t)dt = g(x,b(x))\frac{d}{dx}b(x) - g(x,a(x))\frac{d}{dx}a(x) + \int_{a(x)}^{b(x)} \frac{d}{dx}g(x,t)dt.$$

Then show that the derivative is equal to zero when $a = q_{\tau}$.

- (b) Argue that the median of X is the value of a which minimizes $\mathbb{E}|X-a|$.
- 5. (Optional) Additional problems from CB: 4.4, 4.5, 4.17, 4.18