STAT 712 hw 5

Joint and marginal distributions, conditional distributions, independence
Do problems 4.1, 4.9, 4.10, 4.11, 4.15 from CB. In addition:

1. A frog will hop across a sidewalk, beginning the dirt on one side and ending in the dirt on the other side. Let X be the number of times the frog lands on the sidewalk while hopping across. Derive the probability mass function of X assuming that the frog's hopping distances are independent and have the exponential distribution with mean $1 / \lambda$ and that the sidewalk has width t.
2. Let (X, Y) be a pair of random variables with joint pdf given by

$$
f(x, y)=\frac{x}{\theta} e^{-x / \theta} \mathbf{1}(0<y<1 / x, x>0)
$$

for some $\theta>0$.
(a) Find $P(1 \leq X \leq 2, Y \leq 1)$.
(b) Find the marginal pdf f_{X} of X.
(c) Find $\mathbb{E} X$.
(d) Find the marginal pdf f_{Y} of Y and draw a picture of it when $\theta=1$ (you may use software).

Hint: You will have to do integration by parts.
(e) Give the conditional pdf $f(x \mid y)$ of $X \mid Y=y$ for $y=1$ when $\theta=1$.
(f) Give the conditional pdf $f(y \mid x)$ of $Y \mid X=x$ for $x>0$.
3. Let $\left(Z_{1}, Z_{2}\right)$ be a pair of rvs with the standard bivariate Normal distribution with correlation ρ, so that their joint pdf is given by

$$
f\left(z_{1}, z_{2}\right)=\frac{1}{2 \pi} \frac{1}{\sqrt{1-\rho^{2}}} \exp \left[-\frac{1}{2} \frac{1}{1-\rho^{2}}\left(z_{1}^{2}-2 \rho z_{1} z_{2}+z_{2}^{2}\right)\right] \quad \text { for all } z_{1}, z_{2} \in \mathbb{R}
$$

(a) Show that Z_{1} and Z_{2} are independent if $\rho=0$.
(b) Show that the marginal pdf of Z_{1} is the $\operatorname{Normal}(0,1)$ distribution.
(c) Show that $Z_{2} \mid Z_{1}=z_{1} \sim \operatorname{Normal}\left(\rho z_{1}, 1-\rho^{2}\right)$.
4. Let X have pdf f_{X} and for some $\tau \in(0,1)$ define the quantile check function as

$$
\rho_{\tau}(z)=z(\tau-\mathbf{1}(z<0))= \begin{cases}z \tau, & z \geq 0 \\ -z(1-\tau), & z<0\end{cases}
$$

(a) Show that the τ-quantile q_{τ} of X is equal to the value of a which minimizes $\mathbb{E} \rho_{\tau}(X-a)$.

Hint: Set up the integral and differentiate it with respect to a using the rule of Leibniz

$$
\frac{d}{d x} \int_{a(x)}^{b(x)} g(x, t) d t=g(x, b(x)) \frac{d}{d x} b(x)-g(x, a(x)) \frac{d}{d x} a(x)+\int_{a(x)}^{b(x)} \frac{d}{d x} g(x, t) d t
$$

Then show that the derivative is equal to zero when $a=q_{\tau}$.
(b) Argue that the median of X is the value of a which minimizes $\mathbb{E}|X-a|$.
5. (Optional) Additional problems from CB: 4.4, 4.5, 4.17, 4.18

