STAT 712 hw 5

Joint and marginal distributions, conditional distributions, independence
Do problems 4.1, 4.9, 4.10, 4.11, 4.15 from CB. In addition:

1. A frog will hop across a sidewalk, beginning the dirt on one side and ending in the dirt on the other side. Let X be the number of times the frog lands on the sidewalk while hopping across. Derive the probability mass function of X assuming that the frog's hopping distances are independent and have the exponential distribution with mean $1 / \lambda$ and that the sidewalk has width t.

Let Y_{1}, Y_{2}, \ldots be the hopping distances of the frog. First consider finding $P(X=0)$. We have

$$
P(X=0)=P\left(Y_{1}>t\right)=1-\left(1-e^{t \lambda}\right)=e^{t \lambda}
$$

Now, for any $k \geq 1$, we have

$$
\begin{aligned}
P(X=k) & =P\left(\left\{Y_{1}+\cdots+Y_{k+1}>t\right\} \cap\left\{Y_{1}+\cdots+Y_{k} \leq t\right\}\right) \\
& =P\left(\left\{G_{k}+Y_{k+1}>t\right\} \cap\left\{G_{k} \leq t\right\}\right), \quad G_{k} \sim \operatorname{Gamma}(k, 1 / \lambda) \\
& =\int_{0}^{t} \int_{t-g_{k}}^{\infty} \lambda e^{-\left(y_{k} \lambda\right)} \frac{\lambda^{k}}{\Gamma(k)} g_{k}^{k-1} e^{-\left(g_{k} \lambda\right)} d y_{k} d g_{k} \quad \text { (draw pictures to get integration limits) } \\
& =\int_{0}^{t} e^{-\left(t-g_{k}\right) \lambda} \frac{\lambda^{k}}{\Gamma(k)} g_{k}^{k-1} e^{-\left(g_{k} \lambda\right)} d g_{k} \\
& =e^{-(t \lambda)} \frac{\lambda^{k}}{\Gamma(k)} \int_{0}^{t} g_{k}^{k-1} d g_{k} \\
& =\frac{e^{-t \lambda}(t \lambda)^{k}}{k!},
\end{aligned}
$$

so that $X \sim \operatorname{Poisson}(t \lambda)$. Note that $P(X=0)=e^{t \lambda}=e^{t \lambda}(t \lambda)^{0} / 0$!.
2. Let (X, Y) be a pair of random variables with joint pdf given by

$$
f(x, y)=\frac{x}{\theta} e^{-x / \theta} \mathbf{1}(0<y<1 / x, x>0)
$$

for some $\theta>0$.
(a) Find $P(1 \leq X \leq 2, Y \leq 1)$.

We have

$$
\begin{aligned}
P(1 \leq X \leq 2, Y \leq 1) & =\int_{1}^{2} \int_{0}^{1 / x} \frac{x}{\theta} e^{-x / \theta} d y d x \\
& =\int_{1}^{2} \frac{1}{\theta} e^{-x / \theta} d x \\
& =e^{-1 / \theta}-e^{-2 / \theta}
\end{aligned}
$$

(b) Find the marginal pdf f_{X} of X.

We have

$$
\begin{aligned}
f_{X}(x) & =\int_{-\infty}^{\infty} \frac{x}{\theta} e^{-x / \theta} \mathbf{1}(0<y<1 / x, x>0) d y \\
& =\int_{0}^{1 / x} \frac{x}{\theta} e^{-x / \theta} d y \mathbf{1}(x>0) \\
& =\frac{1}{\theta} e^{-x / \theta} \mathbf{1}(x>0),
\end{aligned}
$$

so that $X \sim \operatorname{Exponential}(\theta)$.
(c) Find $\mathbb{E} X$.

Since $X \sim$ Exponential (θ), we have $\mathbb{E} X=\theta$.
(d) Find the marginal pdf f_{Y} of Y and draw a picture of it when $\theta=1$ (you may use software).

Hint: You will have to do integration by parts.
We have

$$
\begin{aligned}
f_{Y}(y) & =\int_{-\infty}^{\infty} \frac{x}{\theta} e^{-x / \theta} \mathbf{1}(0<y<1 / x, x>0) d x \\
& =\int_{0}^{1 / y} x \cdot \frac{1}{\theta} e^{-x / \theta} d x \cdot \mathbf{1}(y>0) \\
& \left.=\left[-\left.x e^{-x / \theta}\right|_{0} ^{1 / y}-\int_{0}^{1 / y}-e^{-x / \theta} d x\right] \cdot \mathbf{1}(y>0) \quad \text { (by parts: } u=x, d v=\theta^{-1} e^{-x / \theta}\right) \\
& =\left[\theta-e^{-1 /(y \theta)}\left(\theta+\frac{1}{y}\right)\right] \cdot \mathbf{1}(y>0)
\end{aligned}
$$

With $\theta=1$, the function looks like this:

(e) Give the conditional pdf $f(x \mid y)$ of $X \mid Y=y$ for $y=1$ when $\theta=1$.

For $0<y<1 / x$ and $x>0$ (which is the same as $0<x<1 / y, y>0$), we have

$$
f(x \mid y)=\frac{\frac{x}{\theta} e^{-x / \theta}}{\theta-e^{-1 /(y \theta)}\left(\theta+\frac{1}{y}\right)},
$$

so, for $y=1$ and $\theta=1$, we have

$$
f(x \mid 1)=\frac{x e^{-x}}{1-2 e^{-1}} \mathbf{1}(0<x<1) .
$$

(f) Give the conditional pdf $f(y \mid x)$ of $Y \mid X=x$ for $x>0$.

We have

$$
f(y \mid x)=\frac{\frac{x}{\theta} e^{-x / \theta}}{\frac{1}{\theta} e^{-x / \theta}} \mathbf{1}(0<y<1 / x)=x \cdot \mathbf{1}(0<y<1 / x),
$$

so that $Y \mid X=x \sim \operatorname{Uniform}(0,1 / x)$.
3. Let $\left(Z_{1}, Z_{2}\right)$ be a pair of rvs with the standard bivariate Normal distribution with correlation ρ, so that their joint pdf is given by

$$
f\left(z_{1}, z_{2}\right)=\frac{1}{2 \pi} \frac{1}{\sqrt{1-\rho^{2}}} \exp \left[-\frac{1}{2} \frac{1}{1-\rho^{2}}\left(z_{1}^{2}-2 \rho z_{1} z_{2}+z_{2}^{2}\right)\right] \quad \text { for all } z_{1}, z_{2} \in \mathbb{R}
$$

(a) Show that Z_{1} and Z_{2} are independent if $\rho=0$.

If $\rho=0$ then the joint pdf of $\left(Z_{1}, Z_{2}\right)$ becomes

$$
\begin{aligned}
f\left(z_{1}, z_{2}\right) & =\frac{1}{2 \pi} \exp \left[-\frac{1}{2}\left(z_{1}^{2}+z_{2}^{2}\right)\right] \\
& =\frac{1}{\sqrt{2 \pi}} e^{-z_{1}^{2} / 2} \cdot \frac{1}{\sqrt{2 \pi}} e^{-z_{2}^{2} / 2},
\end{aligned}
$$

so that it can be factored into the product of a function of only z_{1} and a function of only z_{2}, implying independence of Z_{1} and Z_{2}.
(b) Show that the marginal pdf of Z_{1} is the $\operatorname{Normal}(0,1)$ distribution.

The marginal pdf $f_{Z_{1}}$ is given by

$$
\begin{aligned}
f_{Z_{1}}\left(z_{1}\right) & =\int_{-\infty}^{\infty} \frac{1}{2 \pi} \frac{1}{\sqrt{1-\rho^{2}}} \exp \left[-\frac{1}{2} \frac{1}{1-\rho^{2}}\left(z_{1}^{2}-2 \rho z_{1} z_{2}+z_{2}^{2}\right)\right] d z_{2} \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{1-\rho^{2}}} \exp \left[-\frac{1}{2} \frac{1}{1-\rho^{2}}\left(\left(z_{2}^{2}-2 \rho z_{1}\right)^{2}+z_{2}^{2}-\rho^{2} z_{2}^{2}\right)\right] d z_{2} \\
& =\frac{1}{\sqrt{2 \pi}} e^{-z_{1}^{2} / 2} \underbrace{\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{1-\rho^{2}}} \exp \left[-\frac{1}{2} \frac{1}{1-\rho^{2}}\left(z_{2}^{2}-2 \rho z_{1}\right)^{2}\right] d z_{2}}_{=1, \text { integral over Normal }\left(\rho z_{1}, 1-\rho^{2}\right) \operatorname{pdf}} \\
& =\frac{1}{\sqrt{2 \pi}} e^{-z_{1}^{2} / 2}
\end{aligned}
$$

which is the pdf of the $\operatorname{Normal}(0,1)$ distribution.
(c) Show that $Z_{2} \mid Z_{1}=z_{1} \sim \operatorname{Normal}\left(\rho z_{1}, 1-\rho^{2}\right)$.

In our work towards finding the marginal pdf $f_{Z_{1}}$ of Z_{1}, we rewrote the joint pdf of Z_{1} and Z_{2} as

$$
f\left(z_{1}, z_{2} ; \rho\right)=\underbrace{\frac{1}{\sqrt{2 \pi}} e^{-z_{1}^{2} / 2}}_{f_{Z_{1}}\left(z_{1}\right)} \cdot \frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{1-\rho^{2}}} \exp \left[-\frac{1}{2} \frac{1}{1-\rho^{2}}\left(z_{2}^{2}-2 \rho z_{1}\right)^{2}\right]
$$

We see from here that the conditional pdf $f\left(z_{2} \mid z_{1}\right)$ of $Z_{2} \mid Z_{1}=z_{1}$ is given by

$$
f\left(z_{2} \mid z_{1}\right)=\frac{f\left(z_{1}, z_{2}\right)}{f_{Z_{1}}\left(z_{1}\right)}=\frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{1-\rho^{2}}} \exp \left[-\frac{1}{2} \frac{1}{1-\rho^{2}}\left(z_{2}^{2}-2 \rho z_{1}\right)^{2}\right]
$$

which is the pdf of the $\operatorname{Normal}\left(\rho z_{1}, 1-\rho^{2}\right)$ distribution.
4. Let X have pdf f_{X} and for some $\tau \in(0,1)$ define the quantile check function as

$$
\rho_{\tau}(z)=z(\tau-\mathbf{1}(z<0))= \begin{cases}z \tau, & z \geq 0 \\ -z(1-\tau), & z<0\end{cases}
$$

(a) Show that the τ-quantile q_{τ} of X is equal to the value of a which minimizes $\mathbb{E} \rho_{\tau}(X-a)$. Hint: Set up the integral and differentiate it with respect to a using the rule of Leibniz

$$
\frac{d}{d x} \int_{a(x)}^{b(x)} g(x, t) d t=g(x, b(x)) \frac{d}{d x} b(x)-g(x, a(x)) \frac{d}{d x} a(x)+\int_{a(x)}^{b(x)} \frac{d}{d x} g(x, t) d t .
$$

Then show that the derivative is equal to zero when $a=q_{\tau}$.
We have

$$
\begin{aligned}
\mathbb{E} \rho_{\tau}(X-a) & =\int_{-\infty}^{\infty} \rho_{\tau}(x-a) f_{X}(x) d x \\
& =-(1-\tau) \int_{-\infty}^{a}(x-a) f_{X}(x) d x+\tau \int_{a}^{\infty}(x-a) f_{X}(x) d x
\end{aligned}
$$

The rule of Leibniz applied to the two integrals gives

$$
\begin{aligned}
& \frac{d}{d a} \int_{-\infty}^{a}(x-a) f_{X}(x) d x=-\int_{-\infty}^{a} f_{X}(x) d x \\
& \frac{d}{d a} \int_{a}^{\infty}(x-a) f_{X}(x) d x=-\int_{a}^{\infty} f_{X}(x) d x .
\end{aligned}
$$

Now we write

$$
\frac{d}{d a} \mathbb{E} \rho_{\tau}(X-a)=(1-\tau) \int_{-\infty}^{a} f_{X}(x) d x-\tau \int_{a}^{\infty} f_{X}(x) d x=0
$$

We see that $a=q_{\tau}$ solves the above equation since $\int_{-\infty}^{q_{\tau}} f_{X}(x) d x=\tau$ and $\int_{q_{\tau}}^{\infty} f_{X}(x) d x=1-\tau$.
(b) Argue that the median of X is the value of a which minimizes $\mathbb{E}|X-a|$.

The median is the $\tau=0.5$ quantile, or $q_{0.5}$. Noting that $\rho_{0.5}(X-a)=\frac{1}{2}|X-a|$, we have

$$
q_{0.5}=\underset{a}{\operatorname{argmin}} \mathbb{E} \rho_{0.5}(X-a)=\underset{a}{\operatorname{argmin}} \frac{1}{2} \mathbb{E}|X-a|=\underset{a}{\operatorname{argmin}} \mathbb{E}|X-a|
$$

5. (Optional) Additional problems from CB: 4.4, 4.5, 4.17, 4.18

Problems 4.1, 4.9, and 4.15 for CB.
4.1 Lut $(x, y) \sim f(x, y)=\frac{1}{4} \mathbb{Z}(-1<x<2,-1<y<2)$
(a) $P\left(x^{2}+y^{2}<1\right)=\frac{1}{4} \pi$

(b) $P(2 x-y>0)=P(y<2 x)=\frac{1}{2}$

(c) $\quad p(|x+y|<2)=1$, sinne $|x+y|<2 \quad \forall(x, y)$ in the serent.
4.9 Show

$$
F(x, y)=F_{x}(x) F_{y}(y) \Rightarrow P(a \leq x \leq b, c \leq y \leq d)=P(a \leq x \leq b) P(c \leq y \leq d) .
$$

Reasoning from the picture

we ham, for any $a \leq b, c \leq d$,

$$
\begin{aligned}
P(a \leq x \leq b, c \leq y \leq d)= & P(x \leq b \cap y \leq d)-P(x \leq a \cap y \leq d) \\
& -P(x \leq b \cap y \leq c)+P(x \leq a \cap y \leq c) \\
= & F_{x}(b) F_{y}(d)-F_{x}(a) F_{x}(d) \\
& -F_{x}(b) F_{y}(c)+F_{x}(a) F_{y}(a) \\
= & {\left[F_{x}(b)-F_{x}(a)\right] F_{y}(d)-\left[F_{x}(b)-F_{x}(a)\right] F_{y}(a) } \\
= & {\left[F_{x}(b)-F_{x}(a)\right]\left[F_{y}(d)-F_{y}(a)\right] } \\
= & P(a \leq x \leq b) P(c \leq y \leq d) .
\end{aligned}
$$

We knun $x+y \sim$ Poism $(a+\theta)$ [Cen shau cesily nith mpr]
(i) Find dist of $x / x+y$.

$$
\begin{aligned}
& P(X=x \mid X+Y=w)=\frac{P(X=x \cap X+Y=w)}{P(X+Y=w)} \\
& =\frac{P(X=x \cap Y=w-x)}{P(X+Y=w)} \\
& =\frac{\frac{\frac{e}{}_{-\theta} \theta^{x}}{x!} \frac{e^{-\lambda}{ }_{\lambda}^{\omega-x}}{(\omega-x)!}}{\frac{e^{-(\theta+\lambda)}(0+\lambda)^{\omega}}{\omega!}} \\
& =\binom{w}{x}\left(\frac{\theta}{\theta+\lambda}\right)^{x}\left(1-\frac{\theta}{\theta+\lambda}\right)^{w-x} \text {. } \\
& \text { a. that } x \left\lvert\, x+y=w \sim B \operatorname{mon}-1\left(w, \frac{\theta}{\theta+\lambda}\right)\right. \text {. }
\end{aligned}
$$

(ic) Fillowiz the sum stares me obtria

$$
y \left\lvert\, x+y=w \sim \operatorname{Bimonal}\left(w, \frac{\lambda}{\theta+\lambda}\right)\right. \text {. }
$$

