STAT 712 hw 6

Bivariate transformations, sums of independent rvs
Do problems 4.19, 4.21, 4.26, from CB. Hint for 4.26: Get the conditional cdf of $Z \mid W=0$ and the conditional cdf of $Z \mid W=1$. This is fully describes the "joint distribution" of (Z, W). In addition:

1. Let $\left(Z_{1}, Z_{2}\right)$ be a pair of rvs with the standard bivariate Normal distribution with correlation ρ, so that their joint pdf is given by

$$
f\left(z_{1}, z_{2}\right)=\frac{1}{2 \pi} \frac{1}{\sqrt{1-\rho^{2}}} \exp \left[-\frac{1}{2} \frac{1}{1-\rho^{2}}\left(z_{1}^{2}-2 \rho z_{1} z_{2}+z_{2}^{2}\right)\right] \quad \text { for all } z_{1}, z_{2} \in \mathbb{R}
$$

(a) Find the joint density of $U_{1}=Z_{1}-Z_{2}$ and $U_{2}=Z_{1}+Z_{2}$.
(b) Check whether U_{1} and U_{2} are independent.
2. Let $Z \sim \operatorname{Normal}(0,1)$ and $W \sim \chi_{\nu}^{2}$, with $\nu>0$, be independent random variables.
(a) Show that

$$
T=\frac{Z}{\sqrt{W / \nu}} \sim t_{\nu}
$$

where t_{ν} represents the t-distribution with ν degrees of freedom, which has pdf given by

$$
f_{T}(t ; \nu)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)} \frac{1}{\sqrt{\nu \pi}}\left(1+\frac{t^{2}}{\nu}\right)^{-(\nu+1) / 2} \quad \text { for } t \in \mathbb{R}
$$

Hint: First find the joint density of (T, U), where $U=W$.
(b) Find the mean of a random variable having the t_{ν} distribution.
(c) Show that $\mathbb{E} W^{-1}=1 /(\nu-2)$, assuming $\nu>2$.
(d) Find the variance of a random variable having the t_{ν} distribution.
3. Let $X \sim f_{X}$ and $Y \sim f_{Y}$ be independent rvs. Show that the pdf of $V=X+Y$ is given by the convolution of f_{X} and f_{Y}; that is

$$
f_{V}(v)=\left(f_{X} * f_{Y}\right)(v)=\int_{-\infty}^{\infty} f_{X}(v-y) f_{Y}(y) d y=\int_{-\infty}^{\infty} f_{X}(y) f_{Y}(v-y) d y \quad \text { for all } \quad v \in \mathbb{R}
$$

4. (Optional) Suppose a ball is pulled by gravity through a triangular lattice of pins, such that at each pin it must go to the left or the right, as figured below. The first pin is positioned at 0 , the two pins in the next row at -1 and 1 , and the three pins in the next row at $-2,0$, and 2 , and so on.

Let Y be the position of the pin the ball touches on its nth hit.
(a) Give the pmf of Y in the case that n is even and in the case that n is odd.
(b) Find the pmf p_{X} such that $Y \stackrel{d}{=} X_{1}+\cdots+X_{n}$ when $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} p_{X}$.
(c) Give the mgf M_{X} corresponding to p_{X} from the previous part. Write M_{X} as an infinite series.
(d) Show that $n^{-1 / 2} Y$ converges in distribution to the $\operatorname{Normal}(0,1)$ distribution.
5. (Optional) Let $W_{1} \sim \chi_{\nu_{1}}^{2}$ and $W_{2} \sim \chi_{\nu_{2}}^{2}$, with $\nu_{1}>0$ and $\nu_{2}>0$, be independent random variables. Show that

$$
R=\frac{W_{1} / \nu_{1}}{W_{2} / \nu_{2}} \sim F_{\nu_{1}, \nu_{2}}
$$

where $F_{\nu_{1}, \nu_{2}}$ represents the F-distribution with numerator degrees of freedom ν_{1} and denominator degrees of freedom ν_{2}, which has pdf given by

$$
f_{R}\left(r ; \nu_{1}, \nu_{2}\right)=\frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)}{\Gamma\left(\frac{\nu_{1}}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)}\left(\frac{\nu_{1}}{\nu_{2}}\right)^{\nu_{1} / 2} r^{\left(\nu_{1}-2\right) / 2}\left(1+\frac{\nu_{1}}{\nu_{2}} r\right)^{-\left(\nu_{1}+\nu_{2}\right) / 2} \quad \text { for } r>0 .
$$

Hint: First find the joint density of (R, U), where $U=W_{2}$.

