STAT 712 hw 6

Bivariate transformations, sums of independent rvs
Do problems 4.19, 4.21, 4.26, from CB. Hint for 4.26: Get the conditional cdf of $Z \mid W=0$ and the conditional cdf of $Z \mid W=1$. This is fully describes the "joint distribution" of (Z, W). In addition:

1. Let $\left(Z_{1}, Z_{2}\right)$ be a pair of rvs with the standard bivariate Normal distribution with correlation ρ, so that their joint pdf is given by

$$
f\left(z_{1}, z_{2}\right)=\frac{1}{2 \pi} \frac{1}{\sqrt{1-\rho^{2}}} \exp \left[-\frac{1}{2} \frac{1}{1-\rho^{2}}\left(z_{1}^{2}-2 \rho z_{1} z_{2}+z_{2}^{2}\right)\right] \quad \text { for all } z_{1}, z_{2} \in \mathbb{R}
$$

(a) Find the joint density of $U_{1}=Z_{1}-Z_{2}$ and $U_{2}=Z_{1}+Z_{2}$.

Firstly, note that $\left(U_{1}, U_{2}\right)$ has support on $\mathbb{R} \times \mathbb{R}$. Now, we have

$$
\begin{aligned}
& u_{1}=z_{1}+z_{2}=: g_{1}\left(z_{1}, z_{2}\right) \\
& u_{2}=z_{1}-z_{2}=: g_{2}\left(z_{1}, z_{2}\right)
\end{aligned} \Longleftrightarrow \quad \begin{aligned}
& z_{1}=\left(u_{1}+u_{2}\right) / 2=: g_{1}^{-1}\left(u_{1}, u_{2}\right) \\
& z_{2}=\left(u_{1}-u_{2}\right) / 2=: g_{2}^{-1}\left(u_{1}, u_{2}\right)
\end{aligned}
$$

with Jacobian

$$
J(x, y)=\left|\begin{array}{ll}
\frac{d}{d u_{1}}\left(u_{1}+u_{2}\right) / 2 & \frac{d}{d u_{2}}\left(u_{1}+u_{2}\right) / 2 \\
\frac{d}{d u_{1}}\left(u_{1}-u_{2}\right) / 2 & \frac{d}{d u_{2}}\left(u_{1}-u_{2}\right) / 2
\end{array}\right|=\left|\begin{array}{rr}
1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2
\end{array}\right|=-1 / 2 .
$$

The transformation method gives

$$
\begin{aligned}
f\left(u_{1}, u_{2}\right) & =\frac{1}{2 \pi} \frac{1}{1-\rho^{2}} \\
& \times \exp \left[-\frac{1}{2\left(1-\rho^{2}\right)}\left(\left(\frac{u_{1}+u_{2}}{2}\right)^{2}-2 \rho\left(\frac{u_{1}+u_{2}}{2}\right)\left(\frac{u_{1}-u_{2}}{2}\right)+\left(\frac{u_{1}-u_{2}}{2}\right)^{2}\right)\right]\left|-\frac{1}{2}\right| \\
& =\frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{2+2 \rho}} \exp \left[-\frac{u_{1}^{2}}{2(2+2 \rho)}\right] \frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{2-2 \rho}} \exp \left[-\frac{u_{1}^{2}}{2(2-2 \rho)}\right],
\end{aligned}
$$

where the simplification takes a few steps.
(b) Check whether U_{1} and U_{2} are independent.

We can see from the joint density that U_{1} and U_{2} are independent, because of the factorization theorem; moreover, we can identify the distributions of U_{1} and U_{2} as

$$
\begin{aligned}
& U_{1} \sim \operatorname{Normal}(0,2+2 \rho) \\
& U_{2} \sim \operatorname{Normal}(0,2-2 \rho)
\end{aligned}
$$

2. Let $Z \sim \operatorname{Normal}(0,1)$ and $W \sim \chi_{\nu}^{2}$, with $\nu>0$, be independent random variables.
(a) Show that

$$
T=\frac{Z}{\sqrt{W / \nu}} \sim t_{\nu}
$$

where t_{ν} represents the t-distribution with ν degrees of freedom, which has pdf given by

$$
f_{T}(t ; \nu)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right)} \frac{1}{\sqrt{\nu \pi}}\left(1+\frac{t^{2}}{\nu}\right)^{-(\nu+1) / 2} \quad \text { for } t \in \mathbb{R}
$$

Hint: First find the joint density of (T, U), where $U=W$.
(b) Find the mean of a random variable having the t_{ν} distribution.

We have $\mathbb{E} \frac{Z}{\sqrt{W / \nu}}=\sqrt{\nu} \mathbb{E} X \mathbb{E} W^{-1 / 2}=0$, where we have used that fact that Z and W are independent and $\mathbb{E} Z=0$.
(c) Show that $\mathbb{E} W^{-1}=1 /(\nu-2)$, assuming $\nu>2$.

We have

$$
\begin{aligned}
\mathbb{E} W^{-1} & =\int_{0}^{\infty} \frac{1}{w} \frac{1}{\Gamma(\nu / 2) 2^{\nu / 2}} w^{\nu / 2-1} e^{-w / 2} d w \\
& =\frac{\Gamma(\nu / 2-1) 2^{\nu / 2-1}}{\Gamma(\nu / 2) 2^{\nu / 2}} \underbrace{\int_{0}^{\infty} \frac{1}{\Gamma(\nu / 2-1) 2^{\nu / 2-1}} w^{(\nu / 2-1)-1} e^{-w / 2} d w}_{=1} \\
& =\frac{\Gamma(\nu / 2-1)}{(\nu / 2-1) \Gamma(\nu / 2-1) 2} \quad \text { (property of Gamma function) } \\
& =1 /(\nu-2) .
\end{aligned}
$$

(d) Find the variance of a random variable having the t_{ν} distribution.

Since $\mathbb{E} T=0$, we have $\operatorname{Var} T=\mathbb{E} T^{2}=\nu \mathbb{E} Z^{2} \mathbb{E} W^{-1}=\nu /(\nu-2)$, since $\mathbb{E} Z^{2}=1$.
3. Let $X \sim f_{X}$ and $Y \sim f_{Y}$ be independent rvs. Show that the pdf of $V=X+Y$ is given by the convolution of f_{X} and f_{Y}; that is

$$
f_{V}(v)=\left(f_{X} * f_{Y}\right)(v)=\int_{-\infty}^{\infty} f_{X}(v-y) f_{Y}(y) d y=\int_{-\infty}^{\infty} f_{X}(y) f_{Y}(v-y) d y \quad \text { for all } \quad v \in \mathbb{R}
$$

Since X and Y are independent, the joint density of (X, Y) is given by $f(x, y)=f_{X}(x) f_{Y}(y)$. Now, let $V=X+Y$ and $U=Y$. Then we have

$$
\begin{aligned}
& v=x+y=: g_{1}(x, y) \\
& u=y=: g_{2}(x, y)
\end{aligned} \Longleftrightarrow \begin{aligned}
& x=v-u=: g_{1}^{-1}(u, v) \\
& y=u=: g_{2}^{-1}(u, v)
\end{aligned}
$$

with Jacobian

$$
J(x, y)=\left|\begin{array}{ll}
\frac{d}{d u}(v-u) & \frac{d}{d v}(v-u) \\
\frac{d}{d u} u & \frac{d}{d v} u
\end{array}\right|=\left|\begin{array}{rr}
-1 & 1 \\
1 & 0
\end{array}\right|=-1 .
$$

So the joint density of (U, V) is given by

$$
f(u, v)=f_{X}(v-u) f_{Y}(u)|-1|=f_{X}(v-u) f_{Y}(u) .
$$

From here we obtain the marginal density of V as

$$
f_{V}(v)=\int_{-\infty}^{\infty} f_{X}(v-u) f_{Y}(u) d u
$$

which gives the first equality (we can write y instead of u if we wish). To get the second inequality, do the same for the bivariate transformation $V=X+Y$ and $U=X$.
4. (Optional) Suppose a ball is pulled by gravity through a triangular lattice of pins, such that at each pin it must go to the left or the right, as figured below. The first pin is positioned at 0 , the two pins in the next row at -1 and 1 , and the three pins in the next row at $-2,0$, and 2 , and so on.

Let Y be the position of the pin the ball touches on its nth hit.
(a) Give the pmf of Y in the case that n is even and in the case that n is odd.

We have

$$
p_{Y}(y)= \begin{cases}\binom{n}{(n-y) / 2}(1 / 2)^{n} \cdot \mathbf{1}(y=0, \pm 2, \pm 4, \ldots, \pm n), & \text { if } n \text { is even } \\ \binom{n}{(n-y) / 2}(1 / 2)^{n} \cdot \mathbf{1}(y= \pm 1, \pm 3, \ldots, \pm n), & \text { if } n \text { is odd }\end{cases}
$$

(b) Find the pmf p_{X} such that $Y \stackrel{d}{=} X_{1}+\cdots+X_{n}$ when $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} p_{X}$.

We find that if $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} p_{X}(x)=(1 / 2) \mathbf{1}(x \in\{-1,1\})$, then $Y \stackrel{d}{=} X_{1}+\cdots+X_{n}$. The random variables X_{1}, \ldots, X_{n} are called Rademacher random variables.
(c) Give the mgf M_{X} corresponding to p_{X} from the previous part. Write M_{X} as an infinite series.

With $p_{X}(x)=(1 / 2) \mathbf{1}(x \in\{-1,1\})$, we find

$$
\begin{aligned}
M_{X}(t)= & (1 / 2)\left[e^{t}+e^{-t}\right] \\
= & (1 / 2)\left[1+t+t^{2} / 2!+t^{3} / 3!+t^{4} / 4!+\ldots\right. \\
& \left.\quad+1-t+t^{2} / 2!-t^{3} / 3!+t^{4} / 4!-\ldots\right] \\
= & 1+t^{2} / 2!+t^{4} / 4!+\ldots \\
= & \sum_{k=0}^{\infty} \frac{t^{2 k}}{(2 k)!} .
\end{aligned}
$$

(d) Show that $n^{-1 / 2} Y$ converges in distribution to the $\operatorname{Normal}(0,1)$ distribution.

We have

$$
\begin{aligned}
M_{Y / \sqrt{n}}(t) & =M_{X_{1}+\cdots+X_{n}}(t / \sqrt{n}) \\
& =\left[M_{X}(t / \sqrt{n})\right]^{n} \\
& =\left[\sum_{k=0}^{\infty} \frac{t^{2 k}}{(2 k)!}\right]^{n} \\
& =\left[1+(t / \sqrt{n})^{2} / 2!+(t / \sqrt{n})^{4} / 4!+\ldots\right]^{n} \\
& =\left[1+\left(t^{2} / 2\right) / n+\left(t^{4} / 4!\right) / n^{2}+\ldots\right]^{n} \\
& \rightarrow e^{t^{2} / 2}
\end{aligned}
$$

as $n \rightarrow \infty$, where we recognize $e^{t^{2} / 2}$ as the mgf of the $\operatorname{Normal}(0,1)$ distribution.
5. (Optional) Let $W_{1} \sim \chi_{\nu_{1}}^{2}$ and $W_{2} \sim \chi_{\nu_{2}}^{2}$, with $\nu_{1}>0$ and $\nu_{2}>0$, be independent random variables. Show that

$$
R=\frac{W_{1} / \nu_{1}}{W_{2} / \nu_{2}} \sim F_{\nu_{1}, \nu_{2}}
$$

where $F_{\nu_{1}, \nu_{2}}$ represents the F-distribution with numerator degrees of freedom ν_{1} and denominator degrees of freedom ν_{2}, which has pdf given by

$$
f_{R}\left(r ; \nu_{1}, \nu_{2}\right)=\frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)}{\Gamma\left(\frac{\nu_{1}}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)}\left(\frac{\nu_{1}}{\nu_{2}}\right)^{\nu_{1} / 2} r^{\left(\nu_{1}-2\right) / 2}\left(1+\frac{\nu_{1}}{\nu_{2}} r\right)^{-\left(\nu_{1}+\nu_{2}\right) / 2} \quad \text { for } r>0
$$

Hint: First find the joint density of (R, U), where $U=W_{2}$.

First, the joint pdf of $\left(W_{1}, W_{2}\right)$ is given by

$$
f\left(w_{1}, w_{2}\right)=\frac{1}{\Gamma\left(\frac{\nu_{1}}{2}\right) 2^{\frac{\nu_{1}}{2}}} w_{1}^{\frac{\nu_{1}}{2}-1} e^{-\frac{w_{1}}{2}} \frac{1}{\Gamma\left(\frac{\nu_{2}}{2}\right) 2^{\frac{\nu_{2}}{2}}} w_{2}^{\frac{\nu_{2}}{2}-1} e^{-\frac{w_{2}}{2}} \mathbf{1}\left(w_{1}>0, w_{2}>0\right) .
$$

The support of (R, U) is $(0, \infty) \times(0, \infty)$. We have

$$
\begin{aligned}
& r=\left(w_{1} / \nu_{1}\right) /\left(w_{2} / \nu_{2}\right)=: g_{1}\left(w_{1}, w_{2}\right) \\
& u=w_{2}=: g_{2}\left(w_{1}, w_{2}\right)
\end{aligned} \Longleftrightarrow \begin{aligned}
& w_{1}=r u\left(\nu_{1} / \nu_{2}\right)=: g_{1}^{-1}(r, u) \\
& w_{2}=u=: g_{2}^{-1}(r, u)
\end{aligned}
$$

with Jacobian

$$
J(x, y)=\left|\begin{array}{ll}
\frac{d}{d d r} r u\left(\nu_{1} / \nu_{2}\right) & \frac{d}{d u} r u\left(\nu_{1} / \nu_{2}\right) \\
\frac{d}{d r} u & \frac{d}{d u} u
\end{array}\right|=\left|\begin{array}{rr}
u\left(\nu_{1} / \nu_{2}\right) & r\left(\nu_{1} / \nu_{2}\right) \\
0 & 1
\end{array}\right|=u\left(\nu_{1} / \nu_{2}\right) .
$$

Now we have

$$
\begin{aligned}
f(r, u) & =\frac{1}{\Gamma\left(\frac{\nu_{1}}{2}\right) 2^{\frac{\nu_{1}}{2}}}\left(r u \frac{\nu_{1}}{\nu_{2}}\right)^{\frac{\nu_{1}}{2}-1} e^{-\frac{1}{2} r u \frac{\nu_{1}}{\nu_{2}}} \frac{1}{\Gamma\left(\frac{\nu_{2}}{2}\right) 2^{\frac{\nu}{2}_{2}^{2}}} u^{\frac{\nu_{2}}{2}-1} e^{-\frac{u}{2}}\left|u \frac{\nu_{1}}{\nu_{2}}\right| \mathbf{1}(r>0, u>0) \\
& =\frac{\left(\frac{\nu_{1}}{\nu_{2}}\right)^{\frac{\nu_{1}}{2}}}{\Gamma\left(\frac{\nu_{1}}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)} \frac{r^{\frac{\nu_{1}}{\nu_{2}}-1}}{2^{\frac{\nu_{1}+\nu_{2}}{2}}} u^{\frac{\nu_{1}+\nu_{2}}{2}-1} e^{-\frac{u}{2}\left(1+r \frac{\nu_{1}}{\nu_{2}}\right)} \mathbf{1}(r>0, u>0)
\end{aligned}
$$

Now we integrate the above over u to obtain the marginal pdf of R. For any $r>0$, we have

$$
\begin{aligned}
f_{R}(r) & =\int_{0}^{\infty} \frac{\left(\frac{\nu_{1}}{\nu_{2}}\right)^{\frac{\nu_{1}}{2}}}{\Gamma\left(\frac{\nu_{1}}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)} \frac{r^{\frac{\nu_{1}}{\nu_{2}}-1}}{2^{\frac{\nu_{1}+\nu_{2}}{2}}} u^{\frac{\nu_{1}+\nu_{2}}{2}-1} e^{-\frac{u}{2}\left(1+r \frac{\nu_{1}}{\nu_{2}}\right)} d u \\
& =\frac{\Gamma\left(\frac{\nu_{1}+\nu_{2}}{2}\right)}{\Gamma\left(\frac{\nu_{1}}{2}\right) \Gamma\left(\frac{\nu_{2}}{2}\right)}\left(\frac{\nu_{1}}{\nu_{2}}\right)^{\frac{\nu_{1}}{2}} \frac{r^{\frac{\nu_{1}-2}{2}}}{\left(1+r \frac{\nu_{1}}{\nu_{2}}\right)^{\frac{\nu_{1}+\nu_{2}}{2}}},
\end{aligned}
$$

which is the pdf of the $F_{\nu_{1}, \nu_{2}}$ distribution.

Problems 4.19, 4.21, and 4.26 from $C B$.
4.19
(a) Lat x_{1}, x_{2} ind $N(0,1)$.

Then $W=\frac{x_{1}-x_{2}}{\sqrt{2}} \sim N(0,1)$, since

$$
\begin{aligned}
M_{w}(t) & =M_{\frac{x_{1}-x_{2}}{\sqrt{2}}}(t) \\
& =\mathbb{E} e^{t\left(x_{1}-x_{2}\right)} \sqrt{2} \\
& =\mathbb{E} e^{(t / \sqrt{2}) x_{1}} e^{(t t / \sqrt{2}) x_{2}} \\
& =M_{x_{1}}(t / \sqrt{2}) \quad M_{x_{2}}(-t / \sqrt{2}) \\
& =e^{(t / \sqrt{2})^{2} / 2} \quad(-t / \sqrt{2})^{2} / 2 \\
& =e^{t^{2} / 2} .
\end{aligned}
$$

Now $\quad \frac{\left(x_{1}-x_{2}\right)^{2}}{2}=w^{2} \sim X_{1}^{2}$, as we him shun la fore.
(b) Let $X_{1} \sim \operatorname{Gamman}\left(\alpha_{1}, 1\right), \quad X_{2} \sim \operatorname{Gamman}\left(\alpha_{2}, 1\right)$ be made rus.

We how

$$
f\left(x_{1}, x_{2}\right)=\frac{1}{\Gamma\left(\alpha_{1}\right)} x^{x_{1}-1} e^{-x_{1}} \frac{1}{\Gamma\left(\alpha_{2}\right)} x^{x_{2}-1} e^{-x_{2}} \mathbb{Q}\left(x_{1}=0, x_{2}=0\right) .
$$

Now lat

$$
\begin{aligned}
& \qquad Y_{1}=\frac{x_{1}}{x_{1}+x_{2}} \text { and } Y_{2}=x_{1}+x_{2} . \\
& \text { then }\left(Y_{1}, y_{2}\right) \in(0,1) \times(0, \infty) \text {. }
\end{aligned}
$$

We have

$$
\left.\begin{array}{rlr}
y_{1}=\delta_{1}\left(x_{1}, x_{2}\right)=\frac{x_{1}}{x_{1}+x_{2}} & \Leftrightarrow & x_{1}=y_{1} y_{2}=\delta_{1}^{-1}\left(y_{1}, y_{2}\right) \\
y_{2}=\delta_{2}\left(x_{1}, x_{2}\right) & \Leftrightarrow x_{1}+x_{2} & x_{2}-y_{1} y_{2}=\delta_{2}^{-1}\left(y_{1}, y_{2}\right) \\
J\left(y_{1}, y_{2}\right) & =\left|\begin{array}{ll}
\frac{0}{\partial y_{1}} y_{1} y_{2} & \frac{\partial}{\partial y_{1}}\left(y_{2}-y_{1} y_{2}\right) \\
\frac{0}{\partial y_{2}} y_{1} y_{2} & \frac{\partial}{\partial y_{2}}\left(y_{2}-y_{1} y_{2}\right)
\end{array}\right| \\
& =\left\lvert\, \begin{array}{ll}
y_{2} & -y_{2} \\
y_{1}
\end{array}\right. \\
& =\left(1-y_{1}\right) y_{2}+y_{1} y_{2}
\end{array} \right\rvert\,
$$

Nov the bivorict tressformatron mathed gimes

$$
\begin{aligned}
& f\left(y_{1}, y_{2}\right)=\frac{1}{\Gamma\left(\alpha_{1}\right)}\left(y_{1} y_{2}\right)^{\alpha_{1}-1} e^{-y_{1} y_{2}} \frac{1}{\Gamma\left(\alpha_{2}\right)}\left(y_{2}-y_{1} y_{2}\right)^{\alpha_{2}-1} e^{-\left(y_{2}-y_{1} y_{2}\right)} y_{2} \quad \alpha\left(0<y_{1}<1, y_{2}-0\right) \\
& =\underbrace{\frac{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)} y_{1}^{\alpha_{1}-1}\left(1-y_{1}\right)^{\alpha_{2}-1} \mathbb{Z}\left(0<y_{1}<1\right)}_{\text {Beta }\left(\alpha_{1}, \alpha_{2}\right)} \underbrace{\underbrace{\frac{y_{1}+\alpha_{2}-1}{\Gamma\left(\alpha_{1}+\alpha_{2}\right)} e^{-y_{2}} 2\left(y_{2}>0\right)}_{\alpha_{2}}}_{\operatorname{Gman}\left(\alpha_{1}+\alpha_{2}\right)}
\end{aligned}
$$

Q the magni of ε_{1} is

$$
\begin{aligned}
f_{y_{1}}\left(y_{1}\right) & =\int_{0}^{\infty} \frac{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\alpha_{2}\right)} y_{1}^{\alpha_{1}-1}\left(1-y_{1}\right)^{\alpha_{2}-1} \mathbb{T}\left(0<y_{1}<1\right) \quad \frac{y_{2}^{\alpha_{1}+\alpha_{2}-1}}{\Gamma\left(\alpha_{1}+\alpha_{2}\right)} e^{-y_{2}} d y_{2} \\
& =\frac{\Gamma\left(\alpha_{1}+\alpha_{2}\right)}{\Gamma\left(d_{1}\right) \Gamma\left(\alpha_{2}\right)} y_{1}^{\alpha_{1}-1}\left(1-y_{1}\right)^{\alpha_{2}-1} \mathbb{}\left(0<y_{1}<1\right) .
\end{aligned}
$$

8.

$$
\frac{x_{1}}{x_{1}+x_{2}} \sim \operatorname{Bat}\left(\alpha_{1}, \alpha_{2}\right) .
$$

Likuwner we con show that

$$
\frac{x_{2}}{x_{1}+x_{2}} \sim \operatorname{Bet}\left(\alpha_{2}, \alpha_{1}\right) .
$$

4.21 let $R^{2} \sim X_{2}^{2}$ and $\theta \sim U_{n} \cdot f(0,2 \pi)$ be ind. cos.

Find the joint density of $(x, y)=(R \cos \theta, R \sin \theta)$
Let $W=R^{2}$. The we wish to fund the jaunt demerits if

$$
(x, y)=(\sqrt{w} \cdot \cos \theta, \sqrt{w} \cdot \sin \theta) .
$$

Real $x_{2}^{2}=\operatorname{Gumax}\left(\frac{2}{2}, 2\right)=\operatorname{Gamm}(1,2), \%$

$$
\begin{aligned}
f(\omega, \theta) & =\frac{1}{2 \pi} \frac{1}{\Gamma(1) 2^{1}} \omega^{1-1} e^{-\omega / 2} \mathbb{1}(\text { ococ2 } \pi, \omega>0) \\
& =\frac{1}{2 \pi} \frac{1}{2} e^{-\omega / 2} \mathbb{2}(0 \operatorname{coc} 2 \pi, \omega>0)
\end{aligned}
$$

Now

$$
\begin{aligned}
& x=\sqrt{\omega} \cos \theta=j_{1}(\theta, \omega) \\
& y=\sqrt{\omega} \sin \theta=\delta_{2}(\theta, \omega)
\end{aligned} \quad \begin{aligned}
& w=x^{2}+y^{2}=\delta_{1}^{-1}(x, y) \\
& \tan ^{-1}(y / x)+r \lambda(x<0)+2 \pi \pi(x<0, y<0)
\end{aligned}
$$

A. lour is $x \neq 0$ and $y \neq 0$, we have $\tan : \mathbb{R}^{-1} \rightarrow\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

$$
\begin{aligned}
J(x, y) & =\left|\begin{array}{cc}
\frac{\partial}{\partial x}\left(x^{2}+y^{2}\right) & \frac{\partial}{\partial x} \tan ^{-1}(y / x) \\
\frac{\partial}{\partial y}\left(x^{2}+y^{2}\right) & \frac{\partial}{\partial y} \tan ^{-1}(y / x)
\end{array}\right| \\
& =\left|\begin{array}{cc}
2 x & \frac{1}{1+(y / x)^{2}}\left(-\frac{y}{x^{2}}\right) \\
2 y & \frac{1}{1+\left(\frac{y}{x}\right)^{2}} \frac{1}{x}
\end{array}\right| \\
& =\left|\begin{array}{cc}
2 x & \frac{1}{x^{2}+y^{2}} \\
2 y & \frac{1}{x+y^{2} / x}
\end{array}\right| \\
& \left.=\begin{array}{c}
\frac{2 x^{2}}{x^{2}+y^{2}}
\end{array} \right\rvert\, \\
& =2
\end{aligned}
$$

So we have

$$
f\left(x_{1}, x_{2}\right)=\frac{1}{2 \pi} e^{-\frac{x^{2}+y^{2}}{2}}
$$

4.26 Let $x \sim E_{\text {icponemtal }}(a), \quad y \sim E_{\text {epporatial }}(\mu)$.
sat $Z=\min \{x, y\}$ and $W= \begin{cases}1 & \text { if } z=x \\ 0 & \text { if } z=4 .\end{cases}$
Figon of jount distibucton $\& Z$ al W.
W is a Bernall vith saueses pab $p(x<4)$. We han

$$
\begin{aligned}
P(x<4) & =\int_{0}^{\infty} \int_{x}^{\infty} \frac{1}{\lambda} e^{-x / \lambda} \frac{1}{\mu} e^{-\lambda / \mu} d y d x \\
& =\left.\int_{0}^{\infty} \frac{1}{\lambda} e^{-x / \lambda}\left[-e^{-y / \mu}\right]\right|_{x} ^{\infty} d x \\
& =\int_{0}^{\infty} \frac{1}{\lambda} e^{-x / \lambda} e^{-x / \mu} d x \\
& =\frac{1}{\lambda} \int_{0}^{\infty} e^{-x\left(\frac{\lambda+\mu}{\lambda \mu}\right)} d x \\
& =\left.\frac{1}{\lambda}\left[-\left(\frac{\lambda \mu}{\lambda+\mu}\right) e^{-x\left(\frac{\lambda+\mu}{\lambda \mu}\right)}\right]\right|_{0} ^{\infty} \\
& =\frac{\mu}{\lambda+\mu} .
\end{aligned}
$$

Nou carsid

$$
\begin{aligned}
P(x \leq x \mid x<y) & =1-P(x>x \mid x<y) \\
& =1-\frac{P(x<x<y)}{P(x<y)} .
\end{aligned}
$$

For any $x>0$, we have

$$
\begin{aligned}
P(x<x<y) & =\int_{x}^{\infty} \int_{t_{1}}^{\infty} \frac{1}{\lambda} e^{-\frac{t_{1}}{\lambda}} \frac{1}{\mu} e^{-\frac{t_{2}}{\mu}} d t_{2} d t_{1} \\
& =\left.\int_{x}^{\infty} \frac{1}{\lambda} e^{-\frac{t_{1}}{\lambda}}\left[-e^{-\frac{t_{2}}{\mu}}\right]\right|_{t_{1}} ^{\infty} d t_{1} \\
& =\int_{x}^{\infty} \frac{1}{\lambda} e^{-t_{1} / \lambda}\left[e^{-t_{1} / \mu}\right] d t_{1} \\
& =\frac{1}{\lambda} \int_{x}^{\infty} e^{-t_{1}\left(\frac{\lambda+\mu}{\lambda \mu}\right)} d t_{1} \\
& =\left.\frac{1}{\lambda}\left[-\left(\frac{\partial \mu}{\lambda+\mu}\right) e^{-t_{1}\left(\frac{\lambda+\mu}{\partial \mu}\right)}\right]\right|_{x} ^{\infty} \\
& =\frac{\mu}{\lambda+\mu} e^{-x\left(\frac{\lambda+\mu}{\lambda \mu}\right)} .
\end{aligned}
$$

s.

$$
\begin{aligned}
& \text { So } \begin{aligned}
P(x \leq x \mid x<y) & =1-\frac{\frac{\mu}{\lambda+\mu} e^{-x\left(\frac{\lambda+\mu}{\partial \mu}\right)}}{\frac{\mu}{\partial+\mu}} \\
& =1-e^{-x\left(\frac{\lambda+\mu}{\partial \mu}\right)}
\end{aligned}
\end{aligned}
$$

This is the condition calf of z gin that $W=1(z=x)$, 20

$$
f_{z \mid \omega=1}(z)=\left(\frac{\lambda+\mu}{\partial \mu}\right) e^{-z\left(\frac{\partial+\mu}{\lambda \mu}\right)} \mathbb{R}(z=0) .
$$

Now consider

$$
\begin{aligned}
P(y \leqslant y \mid y<x) & =1-P(y>y \mid y<x) \\
& =1-\frac{P(y<y<x)}{P(y<x)} .
\end{aligned}
$$

For any you we have

$$
P(y<y<x)=\int_{y}^{\infty} \int_{t_{2}}^{\infty} \frac{1}{\lambda} e^{-t / 2} \frac{1}{\mu} e^{-\frac{t 2}{\mu}} d t_{1} d t_{2}
$$

$$
\begin{aligned}
& =\left.\frac{1}{\mu} \int_{y}^{\infty} e^{-t_{2} / \mu}\left[-e^{-t 1 / \lambda}\right]\right|_{t_{2}} ^{\infty} d t_{2} \\
& =\frac{1}{\mu} \int_{y}^{\infty} e^{-t_{2} / \mu} e^{-t_{2} / \lambda} d t_{2} \\
& =\frac{1}{\mu} \int_{y}^{\infty} e^{-t_{2}\left(\frac{\lambda+\mu}{\lambda \mu}\right)} d t_{2} \\
& =\left.\frac{1}{\mu}\left[-\left(\frac{\lambda \mu}{\lambda+\mu}\right) e^{-t_{2}\left(\frac{\lambda+\mu}{\lambda \mu}\right)}\right]\right|_{y} ^{\infty} \\
& =\frac{\lambda}{\lambda+\mu} e^{-y\left(\frac{\lambda+\mu}{\partial \mu}\right)}
\end{aligned}
$$

So we have

$$
\begin{aligned}
P(Y \leqslant y \mid y<x) & =1-\frac{\frac{\lambda}{\lambda+\mu} e^{-y\left(\frac{\lambda+\mu}{\lambda \mu}\right)}}{1-\frac{\mu}{\lambda+\mu}} \\
& =1-e^{-y\left(\frac{\lambda+\mu}{\lambda \mu}\right)} .
\end{aligned}
$$

This is the conditional colt of Z give that $W=0(z=Y)$, so

$$
f_{z \mid w=0}(z)=\left(\frac{\lambda+\mu}{\lambda \mu}\right) e^{-z\left(\frac{\partial+\mu}{\partial \mu}\right)} \mathbb{R}(z>0)
$$

Sine the conditional distribution of $Z \mid W=1$ is the sem a that of $z \mid w=0, \quad z$ is indenduat of W.

Io in can deserila the joint distribution of the roo par (Z, w) es

$$
\begin{aligned}
& z \sim f_{z}(z)=\left(\frac{\lambda+\mu}{\lambda \mu}\right) e^{-z\left(\frac{\lambda+\mu}{\lambda \mu}\right)} \mathbb{D}(z>0) \\
& W \sim \text { Bernoulli: }\left(\frac{\mu}{\lambda+\mu}\right)
\end{aligned}
$$

with $\quad Z \Perp W$.

