## STAT 712 hw 7

Covariance, hierarchical models, inequalities
Do problems 4.32, 4.42, 4.43, 4.54, 4.58, 4.63 from CB.

1. For $Z_{1}, \ldots, Z_{p} \sim \operatorname{Normal}(0,1)$, not necessarily independent, prove the maximal inequality

$$
\mathbb{E} \max _{1 \leq j \leq p} Z_{j} \leq \sqrt{2 \log p}
$$

Use these steps:
(a) Show that for all $t \in \mathbb{R}$ we have $\exp \left(t \cdot \mathbb{E} \max _{1 \leq j \leq p} Z_{j}\right) \leq p e^{t^{2} / 2}$. Hint: Begin with Jensen's.
(b) Find the value of $t$ yielding the best possible upper bound on $\mathbb{E} \max _{1 \leq j \leq p} Z_{j}$.
2. Let $X_{1} \sim \operatorname{Normal}\left(m_{1}, \kappa^{-1}\right)$ and $X_{2} \sim \operatorname{Normal}\left(m_{2}, \kappa^{-1}\right)$ be independent rvs.
(a) Let the rv pair $(R, \Theta)$ be defined by $X_{1}=R \cos \Theta$ and $X_{2}=R \sin \Theta$, where $R>0$ and $\Theta \in[-\pi, \pi)$. In addition, represent $m_{1}$ and $m_{2}$ as $m_{1}=s \cdot \cos \mu$ and $m_{2}=s \cdot \sin \mu$ for some $s>0$ and $\mu \in[-\pi, \pi)$. Give the joint pdf of $(R, \Theta)$.
(b) Note that if $s=1$ the point $\left(m_{1}, m_{2}\right)$ lies on the unit circle and if $R=1$ the point $\left(X_{1}, X_{2}\right)$ lies on the unit circle. Show that, under $s=1$, the conditional density of $\Theta$ given $R=1$ is given by

$$
f(\theta \mid R=1)=\frac{e^{\kappa \cos (\theta-\mu)}}{\int_{-\pi}^{\pi} e^{\kappa \cos \left(\theta^{\prime}-\mu\right)} d \theta^{\prime}} \mathbf{1}(-\pi \leq \theta<\pi)
$$

This is the pdf of the von Mises distribution, which is often used for modeling directional data.
3. (Optional) Additional problems from CB: 4.33, 4.40.

