STAT 712 hw 7

Covariance, hierarchical models, inequalities
Do problems 4.32, 4.42, 4.43, 4.54, 4.58, 4.63 from CB.

1. For $Z_{1}, \ldots, Z_{p} \sim \operatorname{Normal}(0,1)$, not necessarily independent, prove the maximal inequality

$$
\mathbb{E} \max _{1 \leq j \leq p} Z_{j} \leq \sqrt{2 \log p}
$$

Use these steps:
(a) Show that for all $t \in \mathbb{R}$ we have $\exp \left(t \cdot \mathbb{E} \max _{1 \leq j \leq p} Z_{j}\right) \leq p e^{t^{2} / 2}$. Hint: Begin with Jensen's.

We have

$$
\exp \left(t \cdot \mathbb{E} \max _{1 \leq j \leq p} Z_{j}\right) \leq \mathbb{E} \exp \left(t \max _{1 \leq j \leq p} Z_{j}\right)=\mathbb{E} \max _{1 \leq j \leq p} \exp \left(t Z_{j}\right) \leq \mathbb{E} \sum_{j=1}^{p} e^{t Z_{j}}=p e^{t^{2} / 2}
$$

where the first inequality comes from Jensen's inequality and the second from the fact that the sum cannot be less than the maximum of a set of positive numbers.
(b) Find the value of t yielding the best possible upper bound on $\mathbb{E} \max _{1 \leq j \leq p} Z_{j}$.

Taking the natural logarithm of both sides, we see that

$$
t \cdot \mathbb{E} \max _{1 \leq j \leq p} Z_{j} \leq \log p+\frac{t^{2}}{2} \quad \Longleftrightarrow \quad \mathbb{E} \max _{1 \leq j \leq p} Z_{j} \leq \frac{\log p}{t}+\frac{t}{2}
$$

The value of t which makes the right-hand side the smallest is $t=\sqrt{2 \log p}$ (take the derivative with respect to t, set it equal to 0 , and solve for t; check that 2 nd derivative is positive). Plugging this in for t gives the desired inequality.
2. Let $X_{1} \sim \operatorname{Normal}\left(m_{1}, \kappa^{-1}\right)$ and $X_{2} \sim \operatorname{Normal}\left(m_{2}, \kappa^{-1}\right)$ be independent rvs.
(a) Let the rv pair (R, Θ) be defined by $X_{1}=R \cos \Theta$ and $X_{2}=R \sin \Theta$, where $R>0$ and $\Theta \in[-\pi, \pi)$. In addition, represent m_{1} and m_{2} as $m_{1}=s \cdot \cos \mu$ and $m_{2}=s \cdot \sin \mu$ for some $s>0$ and $\mu \in[-\pi, \pi)$. Give the joint pdf of (R, Θ).

The joint pdf of $\left(X_{1}, X_{2}\right)$ is given by

$$
f\left(x_{1}, x_{2}\right)=\frac{\kappa}{2 \pi} \exp \left[-\frac{\kappa}{2}\left(x_{1}-m_{1}\right)^{2}+\left(x_{2}-m_{2}\right)^{2}\right]
$$

The Jacobian of the transformation defined by $\left(x_{1}, x_{2}\right)=(r \cos \theta, r \sin \theta)$ is given by

$$
\left|\begin{array}{cc}
\frac{\partial}{\partial r} r \cos \theta & \frac{\partial}{\partial r} r \sin \theta \\
\frac{\partial}{\partial \theta} r \cos \theta & \frac{\partial}{\partial \theta} r \sin \theta
\end{array}\right|=\left|\begin{array}{cc}
\cos \theta & \sin \theta \\
-r \sin \theta & r \cos \theta
\end{array}\right|=r \cos ^{2} \theta+r \sin ^{2} \theta=r .
$$

The joint pdf of (R, Θ), by the multivariate transformation method, is given by

$$
\begin{aligned}
f(r, \theta) & =\frac{r \kappa}{2 \pi} \exp \left[-\frac{\kappa}{2}(r \cos \theta-s \cos \mu)^{2}+(r \sin \theta-s \sin \mu)^{2}\right] \\
& =\frac{r \kappa}{2 \pi} \exp \left[-\frac{\kappa}{2}\left(r^{2}+s^{2}-2 r s(\cos \theta \cos \mu+\sin \theta \sin \mu)\right]\right. \\
& =\frac{r \kappa}{2 \pi} \exp \left[-\frac{\kappa}{2}\left(r^{2}+s^{2}-2 r s \cos (\theta-\mu)\right]\right.
\end{aligned}
$$

for $r>0$ and $\theta \in[-\pi, \pi)$.
(b) Note that if $s=1$ the point $\left(m_{1}, m_{2}\right)$ lies on the unit circle and if $R=1$ the point $\left(X_{1}, X_{2}\right)$ lies on the unit circle. Show that, under $s=1$, the conditional density of Θ given $R=1$ is given by

$$
f(\theta \mid R=1)=\frac{e^{\kappa \cos (\theta-\mu)}}{\int_{-\pi}^{\pi} e^{\kappa \cos \left(\theta^{\prime}-\mu\right)} d \theta^{\prime}} \mathbf{1}(-\pi \leq \theta<\pi)
$$

This is the pdf of the von Mises distribution, which is often used for modeling directional data.
The conditional density of θ given $R=r$ is given by $f(\theta \mid r)=f(\theta, r) / f(r)$, where $f(r)=$ $\int_{-\pi}^{\pi} f(\theta, r) d \theta$. Setting $s=1$ and plugging $r=1$ into $f(\theta, r)$, we have (abusing notation for the sake of clarity)

$$
f(\theta, r=1)=\frac{\kappa}{2 \pi} \exp \left[-\kappa(1-\cos (\theta-\mu)]=\frac{\kappa}{2 \pi} e^{-\kappa} e^{\kappa \cos (\theta-\mu)}\right.
$$

Now we write

$$
f(\theta \mid r=1)=f(\theta, 1) / f(r=1)=\frac{\frac{\kappa}{2 \pi} e^{-\kappa} e^{\kappa \cos (\theta-\mu)}}{\int_{-\pi}^{\pi} \frac{\kappa}{2 \pi} e^{-\kappa} e^{\kappa \cos \left(\theta^{\prime}-\mu\right)} d \theta^{\prime}}=\frac{e^{\kappa \cos (\theta-\mu)}}{\int_{-\pi}^{\pi} e^{\kappa \cos \left(\theta^{\prime}-\mu\right)} d \theta^{\prime}}
$$

3. (Optional) Additional problems from CB: 4.33, 4.40.

Problems $4.32,4.42,4.54,4.58$ from CB.
4.52
(G) Lat

$$
\begin{aligned}
& Y / \Lambda \sim D_{\text {osha }}(\Lambda) \\
& \Lambda \sim \operatorname{Gamm}(\alpha, \beta)
\end{aligned}
$$

For $y=0,1,2, \ldots$. the marginal put of y is given by

$$
\begin{aligned}
& p_{y}(y)=\int_{0}^{\infty} \frac{e^{-\lambda} \lambda^{y}}{y!} \frac{1}{\Gamma(\alpha) \beta^{\alpha}} \alpha^{\alpha-1} e^{-\lambda / \beta} d \lambda
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\Gamma(y+\alpha)}{\Gamma(\alpha) y!}\left(\frac{1}{\rho+1}\right)^{\alpha}\left(\frac{\rho}{\beta+1}\right)^{y}
\end{aligned}
$$

$$
p_{y}(r)=\binom{\alpha+y-1}{y}\left(\frac{1}{(\beta+1}\right)^{\alpha}\left(1-\frac{1}{p+1}\right)^{y}
$$

 when success cur with probibility $\frac{1}{n+1}$.

Ah.

$$
\begin{aligned}
& \mathbb{E} Y=\mathbb{E}(\mathbb{E}[Y \mid S])=\mathbb{E}(\Delta)=\alpha \beta \\
& V_{a} Y=\operatorname{Va}(\mathbb{E}[Y \mid \Delta])+\mathbb{E}\left(V_{a}[Y \mid \Delta]\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{Vr}(\Lambda)+\mathbb{E}(\Delta) \\
& =\alpha \beta^{2}+\alpha \beta \\
& =\alpha \beta(\beta+1) .
\end{aligned}
$$

(b) Lat

$$
\begin{aligned}
Y \mid N & \sim \operatorname{Binomill}(N, p) \\
N \mid \Lambda & \sim \operatorname{Poiscon}(\Lambda) \\
\Delta & \sim \operatorname{Gamm}(\alpha, \beta)
\end{aligned}
$$

Ther N has magnul prif

$$
p_{N}(n)=\frac{\Gamma(n+\alpha)}{\Gamma(\alpha) n!}\left(\frac{1}{\beta+1}\right)^{\alpha}\left(\frac{\beta}{\beta+1}\right)^{n},
$$

and the manginal of y is given by

$$
\begin{aligned}
& p_{y}(y)=\sum_{n=0}^{\infty}\binom{n}{y} p^{y}(1-p)^{n-y} z(y \in\{0,1, \ldots, n\}) \frac{\Gamma(n+\alpha)}{\Gamma(\alpha) n!}\left(\frac{1}{p+1}\right)^{\alpha}\left(\frac{\beta}{\beta+1}\right)^{n} \\
& =\sum_{n=y}^{\infty}\binom{n}{y} p^{y}(1-\rho)^{n-y} \frac{\Gamma(n+\alpha)}{\Gamma(\alpha) n!}\left(\frac{1}{p+1}\right)^{\alpha}\left(\frac{\beta}{\beta+1}\right)^{n} \\
& \begin{array}{l}
m=n-y \\
n=m+y
\end{array}=\sum_{m=0}^{\infty}\binom{m+y}{y} p^{y}(1-p)^{m} \quad \frac{\Gamma(m+y+\alpha)}{\Gamma(\alpha)(m+\gamma)!} \quad\left(\frac{1}{\beta+1}\right)^{\alpha}\left(\frac{\beta}{\beta+1}\right)^{m+y}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1+p \beta}{\beta+1}
\end{aligned}
$$

$$
=\frac{\Gamma(y+\alpha)}{\Gamma(\alpha) y!}\left(\frac{p \beta}{1+p \beta}\right)^{y}\left(\frac{1}{1+p \beta}\right)^{\alpha} .
$$

When α is an intages the purf buems

$$
p_{y}(y)=\binom{y+\alpha-1}{y}\left(\frac{1}{1+\rho \beta}\right)^{\alpha}\left(1-\frac{1}{1+\rho \beta}\right)^{y} \text {. }
$$

4.42 Lut $X \mathbb{H} y, \quad \mathbb{E} X=\mu_{x}, \quad \mathbb{E} Y=\mu_{y}, \quad \operatorname{Var} X=\sigma_{x}^{2}, \quad \operatorname{Var} y=\sigma_{y}^{2}$.

We hew

$$
\operatorname{Corr}(x y, y)=\frac{\operatorname{Cov}(x y, y)}{\sqrt{\operatorname{Vor}(x y) \operatorname{Var} y}} .
$$

where

$$
\begin{aligned}
\operatorname{Cor}(X Y, y) & =\mathbb{E}(X Y \cdot y)-\mathbb{I} X y \cdot \mathbb{E} y \\
& =\mathbb{E} X \mathbb{E} y^{2}-\mathbb{E} X \cdot(\mathbb{E} y)^{2} \\
& =\mu_{x} \sigma_{y}^{2} \\
\operatorname{Var}(X Y) & =\mathbb{E}\left[(X y)^{2}\right]-[\mathbb{E}(X y)]^{2} \\
& =\mathbb{E} X^{2} \cdot \mathbb{E} y^{2}-[\mathbb{E} X)^{2}(\mathbb{E} y)^{2} \\
& =\left(\sigma_{x}^{2}+\mu_{x}^{2}\right)\left(\sigma_{y}^{2}+\mu_{y}^{2}\right)-\mu_{x}^{2} \mu_{y}^{2} \\
& =\sigma_{x}^{2} \sigma_{y}^{2}+\sigma_{x}^{2} \mu_{y}^{2}+\sigma_{y}^{2} \mu_{x}^{2}
\end{aligned}
$$

Plogying in these exprossions gines

$$
\begin{aligned}
\operatorname{corr}(x y, y) & =\frac{\mu_{x} \sigma_{y}^{2}}{\sqrt{\left(\sigma_{x}^{2} \sigma_{y}^{2}+\sigma_{x}^{2} \mu_{y}^{2}+\sigma_{y}^{2} \mu_{x}^{2}\right) \sigma_{y}^{2}}} \\
& =\frac{\mu_{x} \sigma_{y}}{\sqrt{\left(\sigma_{x}^{2} \sigma_{y}^{2}+\sigma_{x}^{2} \mu_{y}^{2}+\sigma_{y}^{2} \mu_{x}^{2}\right)}}
\end{aligned}
$$

[4.54] Lat $x_{i}, \ldots, x_{n} \sim \sim_{n} U_{n i f}(0,1)$. Find pof of $y=\prod_{i=1}^{n} x_{i}$.
For $y \in(0,1)$, the cdf of y is given by

$$
\begin{aligned}
& F_{y}(y)=P(y \leq y) \\
& =P\left(\prod_{i=1}^{n} x_{i} \leq y\right) \\
& =p\left(\log \prod_{i=1}^{n} x_{i} \leq \lg y\right) \\
& =P\left(\sum_{i=1}^{n} \log x_{i} \leq \log y\right) \\
& =P\left(\sum_{i=1}^{n}\left(-\log x_{i}\right) \geqslant-1 . j y\right) \\
& =P\left(\sum_{i=1}^{n} w_{i} \geqslant-l_{0 y} y\right), \quad w_{1}, \ldots, w_{n}^{i d} E_{\text {ennadial }}(1) \\
& =p(G \geqslant-1 . j y) \text {, when } G \sim \operatorname{Gomma}(n, 1) \\
& =1-P(G<-10 \gamma y) \\
& =1-F_{G}\left(-l_{0 y}\right) \text {, when } F_{a} \text { th Gammen (n,1) cdf. }
\end{aligned}
$$

Now, for $y \in(0,1)$, we hove

$$
\begin{aligned}
f_{y}(y) & =\frac{d}{d y} F_{a}\left(-l_{0, y}\right) \\
& =f_{G}\left(-1 . l_{y}\right)\left(-\frac{1}{y}\right), \quad f_{G} \text { th Gamman }(n, 1) r^{d f} \\
& =\frac{1}{\Gamma(n)}\left(-l_{o y} y\right)^{n-1} e^{-\left(-10_{y} y\right)} \frac{1}{y} \\
& =\frac{1}{(n-1)!}\left(-\log _{y} y\right)^{n-1} .
\end{aligned}
$$

4.58] Lat x and y ham finite variances. Show
(a) $\quad \operatorname{Cov}(x, y)=\operatorname{Cor}(x, \mathbb{E}[y \mid x])$. We have

$$
\begin{aligned}
\operatorname{Cov}(x, y) & =\mathbb{E} X Y-\mathbb{E} X \mathbb{E} Y \\
& =\mathbb{E}(\mathbb{E}[\mathbb{Y} \mid x])-\mathbb{E} X \mathbb{E}(\mathbb{E}[y \mid x]) \\
& =\mathbb{E}(X \cdot \mathbb{E}[y \mid x])-\mathbb{E} X \cdot \mathbb{E}(\mathbb{E}[y \mid x]) \\
& =\operatorname{Cov}(X, \mathbb{E}[y \mid x]) .
\end{aligned}
$$

(b) X and $Y-\mathbb{E}[y \mid x]$ an uncompleted. We ha-

$$
\begin{aligned}
\operatorname{Cov}(x, y-\mathbb{E}[y / x]) & =\mathbb{E}[x \cdot(y-\mathbb{E}[y \mid x])]-\mathbb{E} x \cdot \mathbb{E}(y-\mathbb{E}[y \mid x]) \\
& =\mathbb{E} X Y-\mathbb{E}(x \cdot \mathbb{E}[y \mid x])-\mathbb{E} X \cdot \mathbb{E} y+\mathbb{E} x \cdot \mathbb{E}(\mathbb{E}[y \mid x]) \\
& =\operatorname{Cov}(x, y)-\underbrace{\operatorname{Cov}(x, \mathbb{E}[y \mid x])}_{=\operatorname{Cov}(x, y)} \\
& =0 .
\end{aligned}
$$

(c) $\operatorname{Var}(y-\mathbb{E}[y \mid x])=\mathbb{E}(\operatorname{Var}[y \mid x])$. We have

$$
\begin{aligned}
V_{0}(Y-\mathbb{E}[y \mid x]) & =\mathbb{E}(Y-\mathbb{E}[y \mid x]-\mathbb{E} \underbrace{(y-\mathbb{E}[y \mid x]}_{=0}))^{2} \\
& =\mathbb{E}(Y-\mathbb{E}[y \mid x])^{2} \\
& =\mathbb{E}\left(\mathbb{E}\left[(Y-\mathbb{E}[y \mid x))^{2} \mid x\right]\right) \\
& =\mathbb{E}(\operatorname{Var}[y \mid x]) .
\end{aligned}
$$

