
STAT 712 hw 7
Covariance, hierarchical models, inequalities

Do problems 4.32, 4.42, 4.43, 4.54, 4.58, 4.63 from CB.

1. For Z1, . . . , Zp ∼ Normal(0, 1), not necessarily independent, prove the maximal inequality

E max
1≤j≤p

Zj ≤
√

2 log p.

Use these steps:

(a) Show that for all t ∈ R we have exp(t · Emax1≤j≤p Zj) ≤ pet
2/2. Hint: Begin with Jensen’s.

We have

exp(t · E max
1≤j≤p

Zj) ≤ E exp(t max
1≤j≤p

Zj) = E max
1≤j≤p

exp(tZj) ≤ E
p∑
j=1

etZj = pet
2/2,

where the first inequality comes from Jensen’s inequality and the second from the fact that
the sum cannot be less than the maximum of a set of positive numbers.

(b) Find the value of t yielding the best possible upper bound on Emax1≤j≤p Zj.

Taking the natural logarithm of both sides, we see that

t · E max
1≤j≤p

Zj ≤ log p+
t2

2
⇐⇒ E max

1≤j≤p
Zj ≤

log p

t
+
t

2
.

The value of t which makes the right-hand side the smallest is t =
√

2 log p (take the derivative
with respect to t, set it equal to 0, and solve for t; check that 2nd derivative is positive).
Plugging this in for t gives the desired inequality.

2. Let X1 ∼ Normal(m1, κ
−1) and X2 ∼ Normal(m2, κ

−1) be independent rvs.

(a) Let the rv pair (R,Θ) be defined byX1 = R cos Θ andX2 = R sin Θ, whereR > 0 and Θ ∈ [−π, π).
In addition, represent m1 and m2 as m1 = s·cosµ and m2 = s·sinµ for some s > 0 and µ ∈ [−π, π).
Give the joint pdf of (R,Θ).

The joint pdf of (X1, X2) is given by

f(x1, x2) =
κ

2π
exp

[
−κ

2
(x1 −m1)

2 + (x2 −m2)
2
]

The Jacobian of the transformation defined by (x1, x2) = (r cos θ, r sin θ) is given by∣∣∣∣ ∂
∂r
r cos θ ∂

∂r
r sin θ

∂
∂θ
r cos θ ∂

∂θ
r sin θ

∣∣∣∣ =

∣∣∣∣ cos θ sin θ
−r sin θ r cos θ

∣∣∣∣ = r cos2 θ + r sin2 θ = r.



The joint pdf of (R,Θ), by the multivariate transformation method, is given by

f(r, θ) =
rκ

2π
exp

[
−κ

2
(r cos θ − s cosµ)2 + (r sin θ − s sinµ)2

]
=
rκ

2π
exp

[
−κ

2
(r2 + s2 − 2rs(cos θ cosµ+ sin θ sinµ)

]
=
rκ

2π
exp

[
−κ

2
(r2 + s2 − 2rs cos(θ − µ)

]
for r > 0 and θ ∈ [−π, π).

(b) Note that if s = 1 the point (m1,m2) lies on the unit circle and if R = 1 the point (X1, X2) lies
on the unit circle. Show that, under s = 1, the conditional density of Θ given R = 1 is given by

f(θ|R = 1) =
eκ cos(θ−µ)∫ π

−π e
κ cos(θ′−µ)dθ′

1(−π ≤ θ < π).

This is the pdf of the von Mises distribution, which is often used for modeling directional data.

The conditional density of θ given R = r is given by f(θ|r) = f(θ, r)/f(r), where f(r) =∫ π
−π f(θ, r)dθ. Setting s = 1 and plugging r = 1 into f(θ, r), we have (abusing notation for

the sake of clarity)

f(θ, r = 1) =
κ

2π
exp [−κ(1− cos(θ − µ)] =

κ

2π
e−κeκ cos(θ−µ).

Now we write

f(θ|r = 1) = f(θ, 1)/f(r = 1) =
κ
2π
e−κeκ cos(θ−µ)∫ π

−π
κ
2π
e−κeκ cos(θ′−µ)dθ′

=
eκ cos(θ−µ)∫ π

−π e
κ cos(θ′−µ)dθ′

.

3. (Optional) Additional problems from CB: 4.33, 4.40.
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Problems 4.32 4.42 4.54 4.58 from CB
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