STAT 712 hw 9

Order statistics, convergence in probability
Do problems 5.23, 5.24, 5.27(a) from CB. In addition:

1. For a random sample $X_{1}, \ldots, X_{n} \stackrel{i n d}{\sim} f_{X}$, the joint density of all the order statistics $X_{(1)}<\cdots<X_{(n)}$ is given by

$$
f_{X_{(1)}, \ldots, X_{(n)}}\left(x_{1}, \ldots, x_{n}\right)=n!\cdot \prod_{i=1}^{n} f_{X}\left(x_{i}\right) \cdot \mathbf{1}\left(-\infty<x_{1}<\cdots<x_{n}<\infty\right)
$$

Suppose $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim}$ Exponential(1), with order statistics $X_{(1)}<\cdots<X_{(n)}$, and let

$$
\begin{aligned}
Z_{1} & =n X_{(1)} \\
Z_{2} & =(n-1)\left(X_{(2)}-X_{(1)}\right) \\
Z_{3} & =(n-2)\left(X_{(3)}-X_{(2)}\right) \\
& \vdots \\
& \\
Z_{n} & =X_{(n)}-X_{(n-1)} .
\end{aligned}
$$

(a) Find the joint pdf of Z_{1}, \ldots, Z_{n}.
(b) State whether Z_{1}, \ldots, Z_{n} are mutually independent.
(c) Give the marginal distribution of each of Z_{1}, \ldots, Z_{n}.
2. For a random sample X_{1}, \ldots, X_{n} from a continuous distribution with median M, give

$$
P\left(X_{(1+l)} \leq M \leq X_{(n-l)}\right)
$$

for each integer $0 \leq l<\frac{n-1}{2}$. Evaluate the probability for $n=15$ and $l=3$. The idea is that we can choose l so the interval $\left(X_{(1+l)}, X_{(n-l)}\right)$ will contain M with some desired probability (this is a confidence interval for the median). Hint: When $n=3$ and $l=0$ the probability is 0.75 .
3. (Optional) Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim}$ Uniform $(\mu-\theta, \mu+\theta), n \geq 2$, and consider the sequences of random variables $\left\{R_{n}\right\}_{n \geq 2}$ and $\left\{M_{n}\right\}_{n \geq 2}$ given by

$$
R_{n}=\frac{X_{(n)}-X_{(1)}}{2} \quad \text { and } \quad M_{n}=\frac{X_{(1)}+X_{(n)}}{2}
$$

for $n \geq 2$.
(a) Find the joint pdf of $\left(R_{n}, M_{n}\right)$.
(b) Find the marginal pdf of R_{n}.
(c) Find the marginal pdf of M_{n}.
(d) Show that R_{n} converges in probability to θ as $n \rightarrow \infty$.
(e) Show that M_{n} converges in probability to μ as $n \rightarrow \infty$.

