STAT 712 hw 9

Order statistics, convergence in probability
Do problems 5.23, 5.24, 5.27(a) from CB. In addition:

1. For a random sample $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim} f_{X}$, the joint density of all the order statistics $X_{(1)}<\cdots<X_{(n)}$ is given by

$$
f_{X_{(1)}, \ldots, X_{(n)}}\left(x_{1}, \ldots, x_{n}\right)=n!\cdot \prod_{i=1}^{n} f_{X}\left(x_{i}\right) \cdot \mathbf{1}\left(-\infty<x_{1}<\cdots<x_{n}<\infty\right)
$$

Suppose $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim}$ Exponential(1), with order statistics $X_{(1)}<\cdots<X_{(n)}$, and let

$$
\begin{aligned}
Z_{1} & =n X_{(1)} \\
Z_{2} & =(n-1)\left(X_{(2)}-X_{(1)}\right) \\
Z_{3}= & (n-2)\left(X_{(3)}-X_{(2)}\right) \\
\quad & \vdots \\
Z_{n}= & X_{(n)}-X_{(n-1)} .
\end{aligned}
$$

(a) Find the joint pdf of Z_{1}, \ldots, Z_{n}.

We first note that the joint support of $\left(Z_{1}, \ldots, Z_{n}\right)$ is the set $(0, \infty)^{n}$. The inverse transformation is

$$
\begin{aligned}
X_{(1)}= & n^{-1} Z_{1} \\
X_{(2)}= & (n-1)^{-1} Z_{2}+n^{-1} Z_{1} \\
X_{(3)}= & (n-2)^{-1} Z_{3}+(n-1)^{-1} Z_{2}+n^{-1} Z_{1} \\
& \vdots \\
X_{(n)}= & Z_{n}+2^{-1} Z_{n-1}+\cdots+(n-2)^{-1} Z_{3}+(n-1)^{-1} Z_{2}+n^{-1} Z_{1},
\end{aligned}
$$

which has Jacobian $J\left(z_{1}, \ldots, z_{n}\right)=(n!)^{-1}$. Noting that

$$
\sum_{i=1}^{n} X_{(i)}=Z_{1}+\cdots+Z_{n}
$$

the joint pdf of $\left(Z_{1}, \ldots, Z_{n}\right)$ is given by

$$
f_{Z_{1}, \ldots, Z_{n}}\left(z_{1}, \ldots, z_{n}\right)=n!\cdot e^{-\left(z_{1}+\cdots+z_{n}\right)} \cdot(n!)^{-1}=e^{-\left(z_{1}+\cdots+z_{n}\right)}
$$

for $\left(z_{1}, \ldots, z_{n}\right) \in(0, \infty)^{n}$.
(b) State whether Z_{1}, \ldots, Z_{n} are mutually independent.

Since the joint pdf can be factored into a product of functions such that each function depends on only one of the variables z_{j}, the random variables Z_{1}, \ldots, Z_{n} are mutually independent.
(c) Give the marginal distribution of each of Z_{1}, \ldots, Z_{n}.

Each Z_{j} has the Exponential(1) distribution, for $j=1, \ldots, n$.
2. For a random sample X_{1}, \ldots, X_{n} from a continuous distribution with median M, give

$$
P\left(X_{(1+l)} \leq M \leq X_{(n-l)}\right)
$$

for each integer $0 \leq l<\frac{n-1}{2}$. Evaluate the probability for $n=15$ and $l=3$. The idea is that we can choose l so the interval $\left(X_{(1+l)}, X_{(n-l)}\right)$ will contain M with some desired probability (this is a confidence interval for the median). Hint: When $n=3$ and $l=0$ the probability is 0.75 .

We have

$$
\begin{aligned}
P\left(X_{(1+l)} \leq M \leq X_{(n-l)}\right) & =P\left(\left\{X_{(1+l)} \leq M\right\} \cap\left\{M \leq X_{(n-l)}\right\}\right) \\
& =1-P\left(\left\{X_{(1+l)}>M\right\} \cup\left\{X_{(n-l)}<M\right\}\right) \\
& =1-P\left(\left\{X_{(1+l)}>M\right\}-P\left(\left\{X_{(n-l)}<M\right\}\right)\right.
\end{aligned}
$$

since $\left\{X_{(1+l)}>M\right\}$ and $\left\{X_{(n-l)}<M\right\}$ are disjoint events. Now consider the probabilities

$$
\begin{aligned}
& P\left(X_{(1+l)}>M\right)=P(\text { at least } n-l \text { are greater than } M) \\
& P\left(X_{(n-l)}<M\right)=P(\text { at least } n-l \text { are less than } M)
\end{aligned}
$$

noting that both are equal to $P(Y \geq n-l)$, where $Y \sim \operatorname{Binomial}(n, 1 / 2)$. So we have

$$
\begin{aligned}
P\left(X_{(1+l)} \leq M \leq X_{(n-l)}\right) & =1-2 P(Y \geq n-l) \\
& =1-2\left(2^{-n} \sum_{y=n-l}^{n}\binom{n}{y}\right) \\
& =1-2 *(1-\operatorname{pbinom}(\mathrm{n}-1-1, \mathrm{n}, 0.5))
\end{aligned}
$$

For $n=15$ and $l=3$ we have $1-2 *(1-\operatorname{pbinom}(11,15,0.5))=0.9648438$, so the interval $\left(X_{(4)}, X_{(12)}\right)$ will contain the median with probability 0.9648438 .
3. (Optional) Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim}$ Uniform $(\mu-\theta, \mu+\theta), n \geq 2$, and consider the sequences of random variables $\left\{R_{n}\right\}_{n \geq 2}$ and $\left\{M_{n}\right\}_{n \geq 2}$ given by

$$
R_{n}=\frac{X_{(n)}-X_{(1)}}{2} \quad \text { and } \quad M_{n}=\frac{X_{(1)}+X_{(n)}}{2}
$$

for $n \geq 2$.
(a) Find the joint pdf of $\left(R_{n}, M_{n}\right)$.

We first write down the joint pdf of $\left(X_{(1)}, X_{(n)}\right)$ as

$$
f_{X_{(1)}, X_{(n)}}(u, v)=\frac{n(n-1)}{(2 \theta)^{n}} \cdot(v-u)^{n-2} \cdot \mathbf{1}(\mu-\theta<u<v<\mu+\theta) .
$$

Now, the trickiest part of finding the joint pdf of $\left(R_{n}, M_{n}\right)$ is writing down the joint support. We have

$$
\begin{aligned}
\left(R_{n}, M_{n}\right) & \in\{(r, m): 0<r<\theta, \mu-\theta+r<m<\mu+\theta-r\} \\
& =\{(r, m): \mu-\theta<m<\mu+\theta, r<\theta-|m-\mu|\}
\end{aligned}
$$

To see this, it might help to run a simulation and plot many realizations of $\left(R_{n}, M_{n}\right)$, as below (these plots were made with $\theta=2, \mu=1$, and $n=5$):

Now we have

$$
\begin{aligned}
& r=(v-u) / 2=: g_{1}(u, v) \\
& m=(v+u) / 2=: g_{2}(u, v)
\end{aligned} \Longleftrightarrow \begin{aligned}
& u=m-r=: g_{1}^{-1}(r, m) \\
& v=m+r=: g_{2}^{-1}(r, m)
\end{aligned}
$$

with Jacobian

$$
J(x, y)=\left|\begin{array}{cc}
\frac{d}{d r} m-r & \frac{d}{d m} m-r \\
\frac{d}{d r} m+r & \frac{d}{d m} m+r
\end{array}\right|=\left|\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right|=-2 .
$$

Now the joint pdf of $\left(R_{n}, M_{n}\right)$ is given by

$$
f_{R_{n}, M_{m}}(r, m)=\frac{n(n-1)}{2 \theta^{n}} \cdot r^{n-2} \cdot \mathbf{1}(\mu-\theta<m<\mu+\theta, r<\theta-|m-\mu|) .
$$

(b) Find the marginal pdf of R_{n}.

For $r \in(0, \theta)$, the marginal pdf of R_{n} is given by

$$
\begin{aligned}
f_{R_{n}}(r) & =\int_{\mu-\theta+r}^{\mu+\theta-r} \frac{n(n-1)}{2 \theta^{n}} \cdot r^{n-2} \cdot d m \\
& =\frac{n(n-1)}{2 \theta^{n}} \cdot r^{n-2}[(\mu+\theta-r)-(\mu-\theta+r)] \\
& =\frac{n(n-1)}{2 \theta^{n}} \cdot r^{n-2}[2 \theta-2 r]
\end{aligned}
$$

We can write this as

$$
f_{R_{n}}(r)=\frac{1}{\theta} \cdot \frac{\Gamma(n-1+2)}{\Gamma(n-1) \Gamma(2)}\left(\frac{r}{\theta}\right)^{(n-1)-1}\left(1-\frac{r}{\theta}\right)^{2-1} \cdot \mathbf{1}(0<r<\theta) .
$$

(c) Find the marginal pdf of M_{n}.

For $m \in(\mu-\theta, \mu+\theta)$ the marginal pdf of M_{n} is given by

$$
f_{M_{n}}(m)=\int_{0}^{\theta-|m-\mu|} \frac{n(n-1)}{2 \theta^{n}} \cdot r^{n-2} \cdot d r=\frac{n}{2 \theta^{n}} \cdot(\theta-|m-\mu|)^{n-1}
$$

So we write

$$
f_{M_{n}}(m)=\frac{n}{2 \theta^{n}} \cdot(\theta-|m-\mu|)^{n-1} \cdot \mathbf{1}(\mu-\theta<m<\mu+\theta) .
$$

(d) Show that R_{n} converges in probability to θ as $n \rightarrow \infty$.

If $B_{n} \sim \operatorname{Beta}(n-1,2)$, then R_{n} has the same distribution as θB_{n}. Therefore

$$
\begin{aligned}
\mathbb{E} R_{n} & =\mathbb{E}\left(\theta B_{n}\right)=\theta \cdot \frac{n-1}{n-1+2} \rightarrow \theta \quad \text { as } n \rightarrow \infty, \quad \text { and } \\
\operatorname{Var} R_{n} & =\operatorname{Var}\left(\theta B_{n}\right)=\theta^{2} \cdot \frac{(n-1) 2}{(n-1+2)^{2}(n-1+2+1)} \rightarrow 0 \quad \text { as } n \rightarrow \infty,
\end{aligned}
$$

from the mean and variance formulas of the Beta distribution. Therefore $R_{n} \xrightarrow{\mathrm{p}} \theta$.
(e) Show that M_{n} converges in probability to μ as $n \rightarrow \infty$.

Fixing $\varepsilon>0$, we have $P\left(\left|M_{n}-\mu\right|<\varepsilon\right)=1$ if $\varepsilon>\theta$; otherwise, we have

$$
\begin{aligned}
P\left(\left|M_{n}-\mu\right|<\varepsilon\right) & =\int_{\mu-\varepsilon}^{\mu+\varepsilon} \frac{n}{2 \theta^{n}} \cdot(\theta-|m-\mu|)^{n-1} d m \\
& =2 \int_{\mu}^{\mu+\varepsilon} \frac{n}{2 \theta^{n}} \cdot(\theta-(m-\mu))^{n-1} d m \\
& =\left.\frac{1}{\theta^{n}}(\theta-(m-\mu))^{n}\right|_{\mu} ^{\mu+\varepsilon} \\
& =1-\left(\frac{\theta-\varepsilon}{\theta}\right)^{n} .
\end{aligned}
$$

Since the right hand side goes to 1 as $n \rightarrow \infty, M_{n} \xrightarrow{\mathrm{p}} \mu$ as $n \rightarrow \infty$.

Problems $5.23,5.24,5.27(2)$ from $C B$
5.23 Let $U_{1}, \ldots, U_{x} \sim U(0,1)$, where X is a ru with punt

$$
p_{x}(x)=\frac{1}{e-1} \frac{1}{x!}, \quad x=1,2,3, \ldots
$$

We went to find the marginal pdf of $z=U_{(1)}$.
we have $z \mid x \sim f(z \mid x)=x(1-z)^{x-1} \quad\left(=x\left[1-F_{0}(z)\right]^{x-1} f_{0}(z)\right)$

$$
x \sim p_{x}
$$

Note that $z \in(0,1)$.

For $z \in(0,1)$, we have

$$
\begin{aligned}
f_{z}(z) & =\sum_{x=1}^{\infty} x(1-z)^{x-1} \frac{1}{e-1} \frac{1}{x!} \\
& =\frac{1}{e^{-1}} \sum_{x=1}^{\infty} \frac{(1-z)^{x-1}}{(x-1)!} \\
& =\frac{1}{c-1} \sum_{k=0}^{\infty} \frac{(1-z)^{k}}{k!} \\
& =\frac{e^{(1-z)}}{e-1} \\
& =\frac{e^{-z}}{1-e^{-1}}
\end{aligned}
$$

which is the pdf of an exponentill dist. truncated to (0,1):

$$
f_{z}(z)=\frac{e^{-z}}{1-e^{-1}} \mathbb{a}(0<z<1)
$$

5.24 Let $x_{1}, \ldots, x_{n} \stackrel{\text { ind }}{\sim} f_{x}(x)=\frac{1}{\theta} \mathbb{Z}(0<x<\theta)$.

Lat

$$
\begin{aligned}
& R=X_{(1)} / X_{(n)} \\
& M=X_{(n)}
\end{aligned}
$$

The joint density of $\left(x_{0}, x_{\infty}\right)$ is

$$
\begin{aligned}
f(u, v) & =n(n-1)\left[F_{x}(v)-F_{x}(u)\right]^{n-2} f_{x}(u) f_{x}(v) \mathbb{\mathbb { }}(u<v) \\
& =n(n-1)\left[\frac{v}{\theta}-\frac{u}{\theta}\right]^{n-2} \frac{1}{\theta} \frac{1}{\theta} \mathbb{\mathbb { }}(n<v) \\
& =\frac{n(n-1)}{\theta^{n}}(v-2)^{n-2} \mathbb{Z}(0<u<v<\theta)
\end{aligned}
$$

Now write

$$
\begin{aligned}
& r=u / v=\delta_{1}(u, v) \\
& \Leftrightarrow \quad u=m r=j_{1}^{-1}(r, m) \\
& m=v=f_{2}(u, v) \\
& v=m=j_{2}^{-1}(r, m) \\
& J(r, m)=\left|\begin{array}{llll}
\frac{\partial}{\partial r} & m r & \frac{\partial}{\partial r} & m \\
\frac{\partial}{\partial m} m r & \frac{\partial}{\partial m} & m
\end{array}\right|=\left|\begin{array}{cc}
m & 0 \\
r & 1
\end{array}\right|=m .
\end{aligned}
$$

So the joint density of (R, M) is given by

$$
\begin{aligned}
f(r, m) & =\frac{n(n-1)}{\theta^{n}}(m-m r)^{n-2} \cdot|m| \mathbb{1}(0<m r<m<\theta) \\
& =n(n-1) \frac{m^{n-1}}{\theta^{n}}(1-r)^{n-2} \mathbb{R}(0<r<1) \mathbb{Z}(0<m<\theta) \\
& =n(n-1)(1-r)^{n-2} \mathbb{1}(0<r<1) \cdot \frac{m^{n-1}}{\theta^{n}} \mathbb{1}(0<m<\theta) .
\end{aligned}
$$

We see that R and M on independent by the factorization theorem.
5.27] Let $x_{1}, \ldots, x_{n} \stackrel{\text { ind }}{\sim} f_{x}$ (a density) with calf F_{x}.

Find the conditional $p d f$ of $X_{G} \mid X_{(n)}$.

For $j<k$ the jour $p^{d f}$ of $\left(X_{(j)} X_{(k)}\right)$ is given by

$$
f(u, v)=\frac{n!}{(j-1)!(k-j-1)!(n-k)!} f_{x}(n) f_{x}(v)\left[F_{x}(n)\right]^{j-1}\left[F_{x}(v)-F_{x}(n)\right]^{k-j-1}\left[1-F_{x}(v)\right]^{n-k}
$$

for $u<v$.

The merging pdf of $X_{(k)}$ is given by

$$
f_{v}(v)=\frac{n!}{(k-1)!(n-k)!}\left[F_{x}(v)\right]^{k-1}\left[1-F_{x}(v)\right]^{n-k} f_{x}(v)
$$

So the conditioul pdf of $X_{(j)} \mid X_{(k)}, j<k \quad n$ given by

$$
\begin{aligned}
f(n \mid v) & =\frac{\frac{n!}{(j-1)!(k-j-1)!(n-k)!} f_{x}(n) f_{x}(v)\left[F_{x}(n)\right]^{j-1}\left[F_{x}(v)-F_{x}(n)\right]^{k-j-1}\left[1-F_{x}(v)\right]^{n-k}}{\frac{n!}{(k-1)!(n-k)!}\left[F_{x}(v)\right]^{k-1}\left[1-F_{x}(v)\right]^{n-k} f_{x}(v)} \\
& =\frac{(k-1)!}{(j-1)!(n-j-1)!} \frac{f_{x}(n)}{F_{x}(v)}\left[\frac{F_{x}(n)}{F_{x}(v)}\right]^{j-1}\left[1-\frac{F_{x}(n)}{F_{x}(v)}\right]^{k-j-1}
\end{aligned}
$$

for $\quad u<V$.

The conditional pdf of $X_{(k)} \mid X_{(0)}$ is

$$
\begin{aligned}
f(v \mid n) & =\frac{\frac{n!}{(j-1)!(k-j-1)!(n-k)!} f_{x}(n) f_{x}(v)\left[F_{x}(n)\right]^{j-1}\left[F_{x}(v)-F_{x}(v)\right]^{n-j-1}\left[1-F_{x}(v)\right]^{n-k}}{\frac{n!}{(j-1)!(n-j)!}\left[F_{x}(v)\right]^{j-1}\left[1-F_{x}(n)\right]^{n-j} f_{x}(n)} \\
& =\left(n-\frac{(n-j)!}{(n-j-1)!(n-n)!} \frac{f_{x}(v)}{1-F_{x}(n)}\left[\frac{F_{x}(v)-F_{x}(n)}{1-F_{x}(n)}\right]^{k-j-1}\left[\frac{1-F_{x}(v)}{1-F_{x}(v)}\right]^{n-k}\right.
\end{aligned}
$$

for $\quad u<v$.

