STAT 712 hw 10

Convergence in distribution, central limit theorem, Slutzky's, delta method

Do problems 5.18 ((a)), 5.30, 5.36, 5.44, 5.51 (a),(b) from CB. In addition:

- 1. Let $X_1, \ldots, X_n \stackrel{\text{ind}}{\sim} \text{Poisson}(\lambda)$. Show that the interval $\sqrt{\bar{X}_n} \pm z_{\alpha/2}/(2\sqrt{n})$ contains $\sqrt{\lambda}$ with probability tending to 1α as $n \to \infty$.
- 2. A real-valued function g is uniformly continuous on \mathcal{A} if for every $\varepsilon > 0$ there exists $\delta_{\varepsilon} > 0$ such that if $x, x' \in \mathcal{A}$ and $|x' - x| < \delta_{\varepsilon}$ then $|g(x') - g(x)| < \varepsilon$. Let the random variables $\{X_n\}_{n \ge 1}$ and X have support on \mathcal{X} and suppose g is uniformly continuous on \mathcal{X} . Show that $g(X_n) \xrightarrow{p} g(X)$ if $X_n \xrightarrow{p} X$.
- 3. (Optional) Let $\theta_1, \ldots, \theta_n$ be independent realizations of the random variable θ , for which we have

 $\mathbb{E}\cos\theta = \rho\cos\mu \\ \mathbb{E}\sin\theta = \rho\sin\mu \\ \text{and} \\ \mathbb{E}\sin(2(\theta - \mu)) = \alpha_2 \\ \mathbb{E}\sin(2(\theta - \mu)) = \beta_2 \\ \end{array}$

Define estimators $\hat{\rho}$ and $\hat{\mu}$ by the equations $\hat{\rho} \cos \hat{\mu} = n^{-1} \sum_{i=1}^{n} \cos \theta_i$ and $\hat{\rho} \sin \hat{\mu} = n^{-1} \sum_{i=1}^{n} \sin \theta_i$. This question is inspired by the paper [1]. The setting is circular data, in which angles or directions $\theta_1, \ldots, \theta_n$ are observed and one wishes to estimate the mean angle μ .

- (a) Show that $\sqrt{n}(\hat{\rho}\cos(\hat{\mu}-\mu)-\rho) \xrightarrow{D} \text{Normal}(0, (1+\alpha_2-2\rho^2)/2) \text{ as } n \to \infty.$ Hint: Show $\hat{\rho}\cos(\hat{\mu}-\mu) = n^{-1}\sum_{i=1}^n \cos(\theta_i-\mu)$ and find $\text{Var}\cos(\theta-\mu).$
- (b) Show that $n(1 \cos(\hat{\mu} \mu))/\sigma^2 \xrightarrow{D} \chi_1^2$ as $n \to \infty$, where $\sigma^2 = (1 \alpha_2)/(4\rho^2)$. This takes some time. Focus on the rest of the hw first.
- (c) It can be shown that $\hat{\sigma}^2 = [1 n^{-1} \sum_{i=1}^n \cos(2(\theta_i \hat{\mu}))]/(4\hat{\rho}^2)$ is a consistent estimator of σ^2 . Use this fact to argue that the interval $\hat{\mu} \pm \cos^{-1}(1 - \hat{\sigma}^2 \chi_{1,\alpha}^2/n)$ will contain μ with probability approaching $1 - \alpha$ as $n \to \infty$.
- 4. (Optional) Additional problems from CB: 5.35, 5.42

References

[1] Nicholas I Fisher and Peter Hall. Bootstrap confidence regions for directional data. Journal of the American Statistical Association, 84(408):996–1002, 1989.