STAT 712 hw 10

Convergence in distribution, central limit theorem, Slutzky's, delta method
Do problems 5.18 (A) $, 5.30,5.36,5.44,5.51$ (a), (b) from CB. In addition:

1. Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim}$ Poisson (λ). Show that the interval $\sqrt{\bar{X}_{n}} \pm z_{\alpha / 2} /(2 \sqrt{n})$ contains $\sqrt{\lambda}$ with probability tending to $1-\alpha$ as $n \rightarrow \infty$.
2. A real-valued function g is uniformly continuous on \mathcal{A} if for every $\varepsilon>0$ there exists $\delta_{\varepsilon}>0$ such that if $x, x^{\prime} \in \mathcal{A}$ and $\left|x^{\prime}-x\right|<\delta_{\varepsilon}$ then $\left|g\left(x^{\prime}\right)-g(x)\right|<\varepsilon$. Let the random variables $\left\{X_{n}\right\}_{n \geq 1}$ and X have support on \mathcal{X} and suppose g is uniformly continuous on \mathcal{X}. Show that $g\left(X_{n}\right) \xrightarrow{\mathrm{p}} g(X)$ if $X_{n} \xrightarrow{\mathrm{p}} X$.
3. (Optional) Let $\theta_{1}, \ldots, \theta_{n}$ be independent realizations of the random variable θ, for which we have

$$
\begin{array}{ll}
\mathbb{E} \cos \theta=\rho \cos \mu \\
\mathbb{E} \sin \theta=\rho \sin \mu & \text { and }
\end{array} \quad \mathbb{E} \cos (2(\theta-\mu))=\alpha_{2}, \quad \mathbb{E} \sin (2(\theta-\mu))=\beta_{2} .
$$

Define estimators $\hat{\rho}$ and $\hat{\mu}$ by the equations $\hat{\rho} \cos \hat{\mu}=n^{-1} \sum_{i=1}^{n} \cos \theta_{i}$ and $\hat{\rho} \sin \hat{\mu}=n^{-1} \sum_{i=1}^{n} \sin \theta_{i}$. This question is inspired by the paper [1]. The setting is circular data, in which angles or directions $\theta_{1}, \ldots, \theta_{n}$ are observed and one wishes to estimate the mean angle μ.
(a) Show that $\sqrt{n}(\hat{\rho} \cos (\hat{\mu}-\mu)-\rho) \xrightarrow{\mathrm{D}} \operatorname{Normal}\left(0,\left(1+\alpha_{2}-2 \rho^{2}\right) / 2\right)$ as $n \rightarrow \infty$. Hint: Show $\hat{\rho} \cos (\hat{\mu}-\mu)=n^{-1} \sum_{i=1}^{n} \cos \left(\theta_{i}-\mu\right)$ and find $\operatorname{Var} \cos (\theta-\mu)$.
(b) Show that $n(1-\cos (\hat{\mu}-\mu)) / \sigma^{2} \xrightarrow{\mathrm{D}} \chi_{1}^{2}$ as $n \rightarrow \infty$, where $\sigma^{2}=\left(1-\alpha_{2}\right) /\left(4 \rho^{2}\right)$.

This takes some time. Focus on the rest of the hw first.
(c) It can be shown that $\hat{\sigma}^{2}=\left[1-n^{-1} \sum_{i=1}^{n} \cos \left(2\left(\theta_{i}-\hat{\mu}\right)\right)\right] /\left(4 \hat{\rho}^{2}\right)$ is a consistent estimator of σ^{2}. Use this fact to argue that the interval $\hat{\mu} \pm \cos ^{-1}\left(1-\hat{\sigma}^{2} \chi_{1, \alpha}^{2} / n\right)$ will contain μ with probability approaching $1-\alpha$ as $n \rightarrow \infty$.
4. (Optional) Additional problems from CB: 5.35, 5.42

References

[1] Nicholas I Fisher and Peter Hall. Bootstrap confidence regions for directional data. Journal of the American Statistical Association, 84(408):996-1002, 1989.

