## STAT 712 hw 10

Convergence in distribution, central limit theorem, Slutzky's, delta method
Do problems 5.18 l(à), 5.30, 5.44, 5.51 (a),(b) from CB. In addition:

1. Let $X_{1}, \ldots, X_{n} \stackrel{\text { ind }}{\sim}$ Poisson $(\lambda)$. Show that the interval $\sqrt{\bar{X}_{n}} \pm z_{\alpha / 2} /(2 \sqrt{n})$ contains $\sqrt{\lambda}$ with probability tending to $1-\alpha$ as $n \rightarrow \infty$.

By the central limit theorem we have

$$
\sqrt{n}\left(\bar{X}_{n}-\lambda\right) \xrightarrow{\mathrm{D}} \operatorname{Normal}(0, \lambda),
$$

since the mean and variance of the Poisson $(\lambda)$ distribution are both equal to $\lambda$. Now, using the delta method with the function $g(z)=\sqrt{z}$, of which the derivative is $g^{\prime}(z)=1 /(2 \sqrt{z})$, we have

$$
\sqrt{n}\left(\sqrt{\bar{X}_{n}}-\sqrt{\lambda}\right) \xrightarrow{\mathrm{D}} \text { Normal }\left(0, \frac{1}{4}\right)
$$

where the asymptotic variance comes from

$$
\left[g^{\prime}(\lambda)\right]^{2} \cdot \lambda=\left(\frac{1}{2 \sqrt{\lambda}}\right)^{2} \cdot \lambda=\frac{1}{4} .
$$

We see that

$$
2 \sqrt{n}\left(\sqrt{\bar{X}_{n}}-\sqrt{\lambda}\right) \xrightarrow{\mathrm{D}} \operatorname{Normal}(0,1),
$$

so that

$$
\lim _{n \rightarrow \infty} P\left(-z_{\alpha / 2}<2 \sqrt{n}\left(\sqrt{\bar{X}_{n}}-\sqrt{\lambda}\right)<z_{\alpha / 2}\right)=1-\alpha
$$

Rearranging the above gives the upper and lower bounds of the confidence interval.
2. A real-valued function $g$ is uniformly continuous on $\mathcal{A}$ if for every $\varepsilon>0$ there exists $\delta_{\varepsilon}>0$ such that if $x, x^{\prime} \in \mathcal{A}$ and $\left|x^{\prime}-x\right|<\delta_{\varepsilon}$ then $\left|g\left(x^{\prime}\right)-g(x)\right|<\varepsilon$. Let the random variables $\left\{X_{n}\right\}_{n \geq 1}$ and $X$ have support on $\mathcal{X}$ and suppose $g$ is uniformly continuous on $\mathcal{X}$. Show that $g\left(X_{n}\right) \xrightarrow{\mathrm{p}} g(X)$ if $X_{n} \xrightarrow{\mathrm{p}} X$.

Choose $\varepsilon>0$. Then there exists $\delta_{\varepsilon}>0$ such that $\left|X_{n}-X\right|<\delta_{\varepsilon} \Longrightarrow\left|g\left(X_{n}\right)-g(X)\right|<\varepsilon$; that is $\left\{\left|X_{n}-X\right|<\delta_{\varepsilon}\right\} \subset\left\{\left|g\left(X_{n}\right)-g(X)\right|<\varepsilon\right\}$. Therefore

$$
P\left(\left|g\left(X_{n}\right)-g(X)\right|<\varepsilon\right) \geq P\left(\left|X_{n}-X\right|<\delta_{\varepsilon}\right) .
$$

The right side goes to 1 as $n \rightarrow \infty$, giving $\lim _{n \rightarrow \infty} P\left(\left|g\left(X_{n}\right)-g(X)\right|<\varepsilon\right)=1$. Since $\varepsilon>0$ was chosen arbitrarily, we have shown $g\left(X_{n}\right) \xrightarrow{\mathrm{p}} g(X)$.
3. (Optional) Let $\theta_{1}, \ldots, \theta_{n}$ be independent realizations of the random variable $\theta$, for which we have

$$
\begin{aligned}
& \mathbb{E} \cos \theta=\rho \cos \mu \\
& \mathbb{E} \sin \theta=\rho \sin \mu
\end{aligned} \quad \text { and } \quad \begin{aligned}
& \mathbb{E} \cos (2(\theta-\mu))=\alpha_{2} \\
& \mathbb{E} \sin (2(\theta-\mu))=\beta_{2}
\end{aligned}
$$

Define estimators $\hat{\rho}$ and $\hat{\mu}$ by the equations $\hat{\rho} \cos \hat{\mu}=n^{-1} \sum_{i=1}^{n} \cos \theta_{i}$ and $\hat{\rho} \sin \hat{\mu}=n^{-1} \sum_{i=1}^{n} \sin \theta_{i}$. This question is inspired by the paper [1]. The setting is circular data, in which angles or directions $\theta_{1}, \ldots, \theta_{n}$ are observed and one wishes to estimate the mean angle $\mu$.
(a) Show that $\sqrt{n}(\hat{\rho} \cos (\hat{\mu}-\mu)-\rho) \xrightarrow{\mathrm{D}} \operatorname{Normal}\left(0,\left(1+\alpha_{2}-2 \rho^{2}\right) / 2\right)$ as $n \rightarrow \infty$.

Hint: Show $\hat{\rho} \cos (\hat{\mu}-\mu)=n^{-1} \sum_{i=1}^{n} \cos \left(\theta_{i}-\mu\right)$ and find $\operatorname{Var} \cos (\theta-\mu)$.
Using the trigonometric identity $\cos (x-y)=\cos x \cos y-\sin x \sin y$, we may write

$$
\begin{aligned}
\hat{\rho} \cos (\hat{\mu}-\mu) & =\hat{\rho} \cos \hat{\mu} \cos \mu+\hat{\rho} \sin \hat{\mu} \sin \mu \\
& =\left(n^{-1} \sum_{i=1}^{n} \cos \theta_{i}\right) \cos \mu+\left(n^{-1} \sum_{i=1}^{n} \sin \theta_{i}\right) \sin \mu \\
& =n^{-1} \sum_{i=1}^{n}\left(\cos \theta_{i} \cos \mu+\sin \theta_{i} \sin \mu\right) \\
& =n^{-1} \sum_{i=1}^{n} \cos \left(\theta_{i}-\mu\right) .
\end{aligned}
$$

Moreover, making use of the trigonometric identities

$$
\cos ^{2} x=\frac{1+\cos (2 x)}{2} \quad \text { and } \quad \cos (x-y)=\cos x \cos y-\sin x \sin y
$$

we have

$$
\begin{aligned}
\operatorname{Var} \cos (\theta-\mu) & =\mathbb{E} \cos ^{2}(\theta-\mu)-(\mathbb{E} \cos (\theta-\mu))^{2} \\
& =\frac{1}{2} \mathbb{E}[1+\cos (2(\theta-\mu))]-[\mathbb{E}(\cos \theta \cos \mu+\sin \theta \sin \mu)]^{2} \\
& =\frac{1}{2}\left(1+\alpha_{2}\right)-\left[\rho \cos ^{2} \mu+\rho \sin ^{2} \mu\right]^{2} \\
& =\frac{1}{2}\left(1+\alpha_{2}-2 \rho^{2}\right) .
\end{aligned}
$$

From here the central limit theorem gives the result.
(b) Show that $n(1-\cos (\hat{\mu}-\mu)) / \sigma^{2} \xrightarrow{\mathrm{D}} \chi_{1}^{2}$ as $n \rightarrow \infty$, where $\sigma^{2}=\left(1-\alpha_{2}\right) /\left(4 \rho^{2}\right)$.

This takes some time. Focus on the rest of the hw first.
Letting $X_{i}=\cos \left(\theta_{i}-\mu\right)$ and $Y_{i}=\sin \left(\theta_{i}-\mu\right)$ for $i=1, \ldots, n$ and setting $\bar{X}_{n}=n^{-1} \sum_{i=1}^{n} X_{i}$ and $\bar{Y}_{n}=\sum_{i=1}^{n} Y_{i}$, we can show that $\cos (\hat{\mu}-\mu)=g\left(\bar{X}_{n}, \bar{Y}_{n}\right)$ for $g(x, y)=x / \sqrt{x^{2}+y^{2}}$. First
write

$$
\begin{aligned}
\hat{\rho} \sin (\hat{\mu}-\mu) & =\hat{\rho} \sin \hat{\mu} \cos \mu-\hat{\rho} \sin \hat{\mu} \cos \mu \\
& =\left(n^{-1} \sum_{i=1}^{n} \sin \theta_{i}\right) \cos \mu-\left(n^{-1} \sum_{i=1}^{n} \sin \theta_{i}\right) \cos \mu \\
& =n^{-1} \sum_{i=1}^{n}\left(\sin \theta_{i} \cos \mu+\sin \theta_{i} \cos \mu\right) \\
& =n^{-1} \sum_{i=1}^{n} \sin \left(\theta_{i}-\mu\right)
\end{aligned}
$$

From this and from our earlier work we may write

$$
\begin{aligned}
\hat{\rho}^{2} & =\hat{\rho}^{2}\left(\sin ^{2}(\hat{\mu}-\mu)+\cos ^{2}(\hat{\mu}-\mu)\right) \\
& =(\hat{\rho} \cos (\hat{\mu}-\mu))^{2}+(\hat{\rho} \sin (\hat{\mu}-\mu))^{2} \\
& =\left(n^{-1} \sum_{i=1}^{n} \cos \left(\theta_{i}-\mu\right)\right)^{2}+\left(n^{-1} \sum_{i=1}^{n} \sin \left(\theta_{i}-\mu\right)\right)^{2} \\
& =\bar{X}_{n}^{2}+\bar{Y}_{n}^{2} .
\end{aligned}
$$

This gives

$$
\cos (\hat{\mu}-\mu)=\frac{\hat{\rho} \cos (\hat{\mu}-\mu)}{\hat{\rho}}=\frac{\bar{X}_{n}}{\sqrt{\bar{X}_{n}^{2}+\bar{Y}_{n}^{2}}} .
$$

Now

$$
\mathbb{E} X_{1}=\mathbb{E} \cos \left(\theta_{1}-\mu\right)=\mathbb{E}\left(\cos \theta_{1} \cos \mu+\sin \theta_{1} \sin \mu\right)=\rho \cos ^{2} \mu+\rho \sin ^{2} \mu=\rho,
$$

and

$$
\begin{aligned}
\mathbb{E} Y_{1} & =\mathbb{E} \sin \left(\theta_{1}-\mu\right) \\
& =\mathbb{E}\left(\sin \theta_{1} \cos \mu+\sin \theta_{1} \cos \mu\right) \\
& =\rho \sin \mu \cos \mu+\rho \sin \mu \cos \mu \\
& =\rho \sin (\mu-\mu) \\
& =0,
\end{aligned}
$$

where we have used the trigonometric identity $\sin (x-y)=\sin x \cos x-\sin y \cos y$. So

$$
g\left(\mu_{X}, \mu_{Y}\right)=g(\rho, 0)=\rho /\left(\rho^{2}+0\right)^{1 / 2}=1 .
$$

If we try the first-order delta method on $\sqrt{n}(\cos (\hat{\mu}-\mu)-1)=\sqrt{n}\left(g\left(\bar{X}_{n}, \bar{Y}_{n}\right)-g\left(\mu_{X}, \mu_{Y}\right)\right)$, we run into a problem: For the function $g(x, y)=x / \sqrt{x^{2}+y^{2}}$ we have

$$
\begin{aligned}
\frac{\partial}{\partial x} g(x, y) & =\frac{y^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}} \\
\frac{\partial}{\partial y} g(x, y) & =-\frac{x y}{\left(x^{2}+y^{2}\right)^{3 / 2}}
\end{aligned}
$$

each of which is equal to zero when we plug in $(x, y)=(\rho, 0)$. Therefore we cannot use the first-order delta method.
Since we cannot use the first-order delta method, we establish the result with the second-order expansion
$g\left(\bar{X}_{n}, \bar{Y}_{n}\right) \approx g\left(\mu_{X}, \mu_{Y}\right)+\dot{\mathbf{g}}\left(\mu_{X}, \mu_{Y}\right)^{T}\binom{\bar{X}_{n}-\mu_{X}}{\bar{Y}_{n}-\mu_{Y}}+\frac{1}{2}\binom{\bar{X}_{n}-\mu_{X}}{\bar{Y}_{n}-\mu_{Y}}^{T} \ddot{\mathbf{g}}\left(\mu_{X}, \mu_{Y}\right)\binom{\bar{X}_{n}-\mu_{X}}{\bar{Y}_{n}-\mu_{Y}}$
where
$\dot{\mathbf{g}}\left(\mu_{X}, \mu_{Y}\right)=\left.\binom{\frac{\partial}{\partial x} g(x, y)}{\frac{\partial}{\partial y} g(x, y)}\right|_{(x, y)=\left(\mu_{X}, \mu_{Y}\right)}, \quad \ddot{\mathbf{g}}\left(\mu_{X}, \mu_{Y}\right)=\left.\left(\begin{array}{cc}\frac{\partial^{2}}{\partial x^{2}} g(x, y) & \frac{\partial^{2}}{\partial x \partial y} g(x, y) \\ \frac{\partial^{2}}{\partial x \partial y} g(x, y) & \frac{\partial^{2}}{\partial y^{2}} g(x, y)\end{array}\right)\right|_{(x, y)=\left(\mu_{X}, \mu_{Y}\right)}$.

After some more differentiation of the function $g(x, y)$, we obtain

$$
\ddot{\mathbf{g}}(\rho, 0)=\left[\begin{array}{cc}
0 & 0 \\
0 & -\rho^{-2}
\end{array}\right]
$$

which, with $g(\rho, 0)=1$ and $\dot{\mathbf{g}}(\rho, 0)=0$, gives the approximation

$$
g\left(\bar{X}_{n}, \bar{Y}_{n}\right) \approx 1-\frac{1}{2} \cdot \frac{\left(\bar{Y}_{n}-\mu_{Y}\right)^{2}}{2 \rho^{2}}=1-\frac{\sigma_{Y}^{2}}{2 n \rho^{2}}\left(\frac{\sqrt{n}\left(\bar{Y}_{n}-\mu_{Y}\right)}{\sigma_{Y}}\right)^{2}
$$

where $\sigma_{Y}^{2}=\operatorname{Var} Y_{1}$. We now use the fact that $\sqrt{n}\left(\bar{Y}_{n}-\mu_{Y}\right) / \sigma_{Y}$ converges in distribution to a $\operatorname{Normal}(0,1)$ random variable, which when squared has the $\chi_{1}^{2}$ distribution we can represent this random variable with $W$. Lastly, we plug in

$$
\begin{aligned}
\sigma_{Y}^{2} & =\operatorname{Var} \sin (\theta-\mu) \\
& =\mathbb{E} \sin ^{2}(\theta-\mu)-[\mathbb{E} \sin (\theta-\mu)]^{2} \\
& =\frac{1}{2} \mathbb{E}\left(1-\cos (2(\theta-\mu))-(0)^{2}\right. \\
& =\frac{1-\alpha_{2}}{2}
\end{aligned}
$$

and rearrange to obtain

$$
n[1-\cos (\hat{\mu}-\mu)] \approx \frac{1-\alpha_{2}}{4 \rho^{2}} \cdot W
$$

(c) It can be shown that $\hat{\sigma}^{2}=\left[1-n^{-1} \sum_{i=1}^{n} \cos \left(2\left(\theta_{i}-\hat{\mu}\right)\right)\right] /\left(4 \hat{\rho}^{2}\right)$ is a consistent estimator of $\sigma^{2}$. Use this fact to argue that the interval $\hat{\mu} \pm \cos ^{-1}\left(1-\hat{\sigma}^{2} \chi_{1, \alpha}^{2} / n\right)$ will contain $\mu$ with probability approaching $1-\alpha$ as $n \rightarrow \infty$.

We begin by writing $P\left(n[1-\cos (\hat{\mu}-\mu)] / \hat{\sigma}^{2}<\chi_{1, \alpha}^{2}\right) \rightarrow 1-\alpha$ as $n \rightarrow \infty$. Then we have

$$
\begin{aligned}
\left\{n[1-\cos (\hat{\mu}-\mu)] / \hat{\sigma}^{2}<\chi_{1, \alpha}^{2}\right\} & =\left\{\cos (\hat{\mu}-\mu)>1-\frac{\hat{\sigma}^{2}}{n} \chi_{1, \alpha}^{2}\right\} \\
& =\left\{|\hat{\mu}-\mu|<\cos ^{-1}\left(1-\frac{\hat{\sigma}^{2}}{n} \chi_{1, \alpha}^{2}\right)\right\}
\end{aligned}
$$

so that $\hat{\mu}$ will lie within $\cos ^{-1}\left(1-\frac{\hat{\sigma}^{2}}{n} \chi_{1, \alpha}^{2}\right)$ of $\mu$ with probability approaching $1-\alpha$ as $n \rightarrow \infty$.
4. (Optional) Additional problems from CB: 5.35, 5.42

## References

[1] Nicholas I Fisher and Peter Hall. Bootstrap confidence regions for directional data. Journal of the American Statistical Association, 84(408):996-1002, 1989.

Problems $5.18,5.30,5.36,5.44,5.51(c),(b)$ from $C B$.
5.18 Let $x \sim t_{v}$, so

$$
f_{x}(x)=\frac{\Gamma\left(\frac{v+1}{2}\right)}{\Gamma\left(\frac{v}{2}\right)} \frac{1}{\sqrt{v \pi}} \frac{1}{\left(1+\frac{x^{2}}{v}\right)^{\frac{v+1}{2}}}
$$

(a) Already done in previous has.
(b) Let $R=x^{2}$. We cen show $R \sim F_{1, \nu}$ in two ways:
$C_{i)} \sin \times x \sim t_{v}$, we cen write

$$
x=\frac{z}{\sqrt{w / t}}
$$

where $\quad z \sim N(0,1), \quad W \sim X_{2}^{2}$, and $Z \Perp W$.
Then

$$
R=x^{2}=\frac{z^{2 / 1}}{w / v} \sim F_{1, v}
$$

from "the anatomy" of an F distributed random variable.
(ii) We ca use the cal method: For $r>0$ we have

$$
\begin{aligned}
P(R \leq r) & =P\left(x^{2} \leq r\right) \\
& =P(-\sqrt{r} \leq x \leq \sqrt{r}) \\
& =F_{x}(\sqrt{r})-F_{x}(-\sqrt{r})
\end{aligned}
$$

so

$$
\begin{aligned}
f_{R}(r) & =f_{x}(r)\left(\frac{1}{2 \sqrt{r}}\right)-f_{x}(-\sqrt{r})\left(-\frac{1}{2 \sqrt{r}}\right) \\
& =\frac{1}{\sqrt{r}} f_{x}(\sqrt{r}) \\
& =\frac{1}{\sqrt{r}} \frac{\Gamma\left(\frac{v+1}{2}\right)}{\Gamma\left(\frac{v}{2}\right)} \frac{1}{\sqrt{v \pi}} \frac{1}{\left(1+\frac{r}{2}\right)^{\frac{v+1}{2}}} \\
& =\frac{\Gamma\left(\frac{v+1}{2}\right)}{\Gamma\left(\frac{v}{2}\right) \Gamma\left(\frac{1}{2}\right)}\left(\frac{1}{v}\right)^{\frac{1}{2}} \frac{r^{\frac{1-2}{2}}}{\left(1+\frac{r}{v}\right)^{\frac{v+1}{2}}}
\end{aligned}
$$

We recognize this is the pdt of the $F_{1,2}$ distribution.
(c) We have

$$
\begin{aligned}
\lim _{v \rightarrow \infty} f(x ; v) & =\underbrace{\lim _{v \rightarrow \infty} \frac{\Gamma\left(\frac{v+1}{2}\right)}{\Gamma\left(\frac{v}{2}\right)}}_{v \rightarrow \infty} \frac{1}{\sqrt{v \pi}} \frac{1}{\left(1+\frac{x^{2}}{v}\right)^{\frac{v+1}{2}}} \\
& =\underbrace{\left[\lim _{v \rightarrow \infty} \frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\Gamma\left(\frac{v}{2}\right) \sqrt{\frac{v}{2}}}\right]}_{=1} \underbrace{\frac{1}{\sqrt{2 \pi}}\left[\lim _{v \rightarrow \infty} \frac{1}{\left(1+\frac{x^{2} / 2}{v / 2}\right)^{v / 2}}\right]}_{\frac{1}{\sqrt{2 \pi}} \frac{1}{e^{x^{2} / 2}}}[\underbrace{\left.\lim _{v \rightarrow \infty} \frac{1}{\left(1+\frac{x^{2}}{v}\right)^{1 / 2}}\right]}_{=1}] \\
& =\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} .
\end{aligned}
$$

To sue the show: Stirligé formula gives

$$
\Gamma(n+1) \approx \sqrt{2 \pi} n^{n+1 / 2} e^{-n}
$$

tor large ne so we write

$$
\begin{aligned}
& \lim _{v \rightarrow \infty} \frac{\Gamma\left(\frac{\nu 1}{2}\right)}{\Gamma\left(\frac{\nu}{2}\right) \sqrt{\frac{\nu}{2}}}=\lim _{v \rightarrow \infty} \frac{\sqrt{2 \pi}\left(\frac{\nu-1}{2}\right)^{\left(\frac{\nu-1}{2}\right)+\frac{1}{2}} e^{-\left(\frac{\nu-1}{2}\right)}}{\sqrt{2 \pi}\left(\frac{\nu-2}{2}\right)^{\left(\frac{\nu-2}{2}\right)+1 / 2}} e^{-\left(\frac{\nu-2}{2}\right)} \frac{1}{\sqrt{\frac{\nu}{2}}} \\
& =e^{-1 / 2} \lim _{v \rightarrow \infty} \frac{\left(\frac{v-1}{2}\right)^{\frac{1}{2}}}{\left(\frac{v-2}{2}\right)^{1 / 2}} \frac{1}{\left(\frac{v-2}{2}\right)^{-1 / 2}} \sqrt{\frac{v}{2}} \\
& =e^{-1 / 2} \underbrace{\lim _{v \rightarrow 0}\left(\frac{v-2}{v}\right)^{\frac{1}{2}}}_{=1} \underbrace{\lim _{v \rightarrow \infty}\left(\frac{v-1}{v-2}\right)^{1 / 2}}_{e^{1 / 2}} . \\
& =1 \text {. }
\end{aligned}
$$

where

$$
\begin{aligned}
\left(\frac{v-1}{v-2}\right)^{v / 2} & =\left(\frac{(v-1)-1}{\nu-1}\right)^{-\frac{v}{2}} \\
& =\left(1-\frac{1}{v-1}\right)^{-\frac{v}{2}} \\
& =\left[\left(1-\frac{1}{v-1}\right)^{(v-1}\right]^{-\frac{1}{2}}\left(1-\frac{1}{v \cdot 1}\right)^{-1 / 2} \\
& \rightarrow\left(e^{-1}\right)^{-1 / 2} \cdot 1=e^{1 / 2}
\end{aligned}
$$

(d) Sinu $x \xrightarrow{d} z \sim N \operatorname{Normal}(0,1)$, we ham

$$
x^{2} \rightarrow z^{2} \sim x_{1}^{2}
$$

by a resolt called the contuicon morery theorm.
(e) Let $w_{1} \sim x_{g}^{2}$ and $w_{2} \sim x_{p}^{2}$ be independent rus. Them

$$
R=q \frac{w_{1} / q}{W_{2} / p}=\frac{W_{1}}{w_{2} / p} \rightarrow w_{1} \sim x_{1}^{2}
$$

by Slotzky's theorem, since

$$
\frac{W_{2}}{p}=\frac{z_{1}^{2}+\ldots+z_{p}^{2}}{p} \rightarrow 1, \quad \text { as } p \rightarrow \infty \text {. }
$$

5.30 For large $n$ we have

$$
\bar{x}_{1}-\bar{x}_{2} \stackrel{\text { approx }}{\sim} N \operatorname{crmal}\left(0, \frac{2 \sigma^{2}}{n}\right)
$$

s.

$$
P\left(\left|\bar{x}_{1}-\bar{x}_{2}\right|<\frac{\sigma}{5}\right)=P\left(\left|\frac{\bar{x}_{1}-\bar{x}_{2}}{\sigma \sqrt{2 / n}}\right|<\frac{1}{5 \sqrt{2 / n}}\right)
$$



$$
\begin{array}{ll}
\Leftrightarrow & \frac{\sqrt{n}}{5 \sqrt{2}}=\underbrace{}_{\underbrace{0.005}_{\frac{0.01}{2}}}=\operatorname{s}^{n o r m}(.995)=2.576 \\
\Leftrightarrow & n=\left(5 \cdot \sqrt{2} \cdot z_{0.005}\right)^{2}=(5 \cdot \sqrt{2} \cdot 2.576)^{2}=331.7
\end{array}
$$

8. tate $n=332$
5.44 Let $X_{1}, \ldots, X_{n}{ }^{\text {ind }}$ Bernoulli $(p), \quad Y_{n}=n^{-1} \sum_{i=1}^{n} X_{i}$.
(a) The cental limit theorem gives

$$
\sigma_{n}\left(y_{n}-p\right) \xrightarrow{0} N(0, p(1-p)) \quad \text { as } n \rightarrow \infty \text {, }
$$

$\sin c \mathrm{E} \quad X_{1}=p$ and $\operatorname{Var} X_{1}=p(1-p)$.
(b) Lat $g(z)=z(1-z)$. Then $f^{\prime}(z)=z(-1)+1(1-z)=1-2 z$.

We how $\left[\delta^{\prime}(p)\right]^{2} p(1-p)=(1-2 p)^{2} p(1-r)$, so the delft unthread gins

$$
\sqrt{n}\left(Y_{n}\left(1-Y_{n}\right)-p(1-p)\right) \xrightarrow{D} N\left(0,(1-2 p)^{2} p(1-p)\right),
$$

provided $p \neq 1 / 2$. If $p=1 / 2$ then $\gamma^{\prime}(p)=0$, so in camu.t
use the
$1^{2+}$-order delta method.
(c) For $g^{(z)}=z(1-z)$ we han $g^{\prime \prime}(z)=-2$.

If $p=1 / 2, \quad \frac{\delta^{\prime \prime}(r) p(1-p)}{2}=\frac{(-2) \frac{1}{2} \frac{1}{2}}{2}=-\frac{1}{4}$.
\& the $2^{\text {nd }}$-order delta method gives

$$
n\left(y_{n}\left(1-y_{n}\right)-\frac{1}{4}\right) \xrightarrow{D}-\frac{1}{4} W \text {, where } \quad W \sim x^{2} .
$$

5.51 For $\quad U_{1}, \ldots, U_{n}{ }^{i n d} U_{n i t}(0,1)$,
(a) $\quad \frac{v_{n}\left(\bar{U}_{n}-\Phi U_{1}\right)}{\sqrt{V_{n-} U_{1}}}=\frac{\sqrt{n}^{\left(\bar{U}_{n}-1 / 2\right)}}{\sqrt{1 / 12}} \xrightarrow{d} N(0,1)$.

For $n=12$, we hour

$$
\frac{\overline{i n}\left(\bar{u}_{n}-1 / 2\right)}{\sqrt{1 / 12}}=(12)\left(\bar{u}_{n}-1 / 2\right)=\sum_{i=1}^{12} u_{i}-6 .
$$

(b) S.proot of $\sum_{i=1}^{12} v_{i}-6$ is any $(-6,6)$.

