
STAT 712 hw 10

Convergence in distribution, central limit theorem, Slutzky’s, delta method

Do problems 5.18 ///(a), 5.30, 5.44, 5.51 (a),(b) from CB. In addition:

1. Let X1, . . . , Xn
ind∼ Poisson(λ). Show that the interval

√
X̄n±zα/2/(2

√
n) contains

√
λ with probability

tending to 1− α as n→∞.

By the central limit theorem we have

√
n(X̄n − λ)

D−→ Normal(0, λ),

since the mean and variance of the Poisson(λ) distribution are both equal to λ. Now, using the
delta method with the function g(z) =

√
z, of which the derivative is g′(z) = 1/(2

√
z), we have

√
n(
√
X̄n −

√
λ)

D−→ Normal

(
0,

1

4

)
,

where the asymptotic variance comes from

[g′(λ)]2 · λ =

(
1

2
√
λ

)2

· λ =
1

4
.

We see that
2
√
n(
√
X̄n −

√
λ)

D−→ Normal(0, 1),

so that
lim
n→∞

P
(
−zα/2 < 2

√
n(
√
X̄n −

√
λ) < zα/2

)
= 1− α.

Rearranging the above gives the upper and lower bounds of the confidence interval.

2. A real-valued function g is uniformly continuous on A if for every ε > 0 there exists δε > 0 such that
if x, x′ ∈ A and |x′ − x| < δε then |g(x′)− g(x)| < ε. Let the random variables {Xn}n≥1 and X have

support on X and suppose g is uniformly continuous on X . Show that g(Xn)
p−→ g(X) if Xn

p−→ X.

Choose ε > 0. Then there exists δε > 0 such that |Xn −X| < δε =⇒ |g(Xn)− g(X)| < ε; that is
{|Xn −X| < δε} ⊂ {|g(Xn)− g(X)| < ε}. Therefore

P (|g(Xn)− g(X)| < ε) ≥ P (|Xn −X| < δε).

The right side goes to 1 as n → ∞, giving limn→∞ P (|g(Xn) − g(X)| < ε) = 1. Since ε > 0 was

chosen arbitrarily, we have shown g(Xn)
p−→ g(X).



3. (Optional) Let θ1, . . . , θn be independent realizations of the random variable θ, for which we have

E cos θ = ρ cosµ
E sin θ = ρ sinµ

and
E cos(2(θ − µ)) = α2

E sin(2(θ − µ)) = β2

Define estimators ρ̂ and µ̂ by the equations ρ̂ cos µ̂ = n−1
∑n

i=1 cos θi and ρ̂ sin µ̂ = n−1
∑n

i=1 sin θi.
This question is inspired by the paper [1]. The setting is circular data, in which angles or directions
θ1, . . . , θn are observed and one wishes to estimate the mean angle µ.

(a) Show that
√
n(ρ̂ cos(µ̂− µ)− ρ)

D−→ Normal(0, (1 + α2 − 2ρ2)/2) as n→∞.
Hint: Show ρ̂ cos(µ̂− µ) = n−1

∑n
i=1 cos(θi − µ) and find Var cos(θ − µ).

Using the trigonometric identity cos(x− y) = cos x cos y − sinx sin y, we may write

ρ̂ cos(µ̂− µ) = ρ̂ cos µ̂ cosµ+ ρ̂ sin µ̂ sinµ

= (n−1
∑n

i=1 cos θi) cosµ+ (n−1
∑n

i=1 sin θi) sinµ

= n−1
∑n

i=1(cos θi cosµ+ sin θi sinµ)

= n−1
∑n

i=1 cos(θi − µ).

Moreover, making use of the trigonometric identities

cos2 x =
1 + cos(2x)

2
and cos(x− y) = cos x cos y − sinx sin y,

we have

Var cos(θ − µ) = E cos2(θ − µ)− (E cos(θ − µ))2

=
1

2
E[1 + cos(2(θ − µ))]− [E(cos θ cosµ+ sin θ sinµ)]2

=
1

2
(1 + α2)− [ρ cos2 µ+ ρ sin2 µ]2

=
1

2
(1 + α2 − 2ρ2).

From here the central limit theorem gives the result.

(b) Show that n(1− cos(µ̂− µ))/σ2 D−→ χ2
1 as n→∞, where σ2 = (1− α2)/(4ρ

2).
This takes some time. Focus on the rest of the hw first.

Letting Xi = cos(θi − µ) and Yi = sin(θi − µ) for i = 1, . . . , n and setting X̄n = n−1
∑n

i=1Xi

and Ȳn =
∑n

i=1 Yi, we can show that cos(µ̂− µ) = g(X̄n, Ȳn) for g(x, y) = x/
√
x2 + y2. First
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write

ρ̂ sin(µ̂− µ) = ρ̂ sin µ̂ cosµ− ρ̂ sin µ̂ cosµ

= (n−1
∑n

i=1 sin θi) cosµ− (n−1
∑n

i=1 sin θi) cosµ

= n−1
∑n

i=1(sin θi cosµ+ sin θi cosµ)

= n−1
∑n

i=1 sin(θi − µ).

From this and from our earlier work we may write

ρ̂2 = ρ̂2(sin2(µ̂− µ) + cos2(µ̂− µ))

= (ρ̂ cos(µ̂− µ))2 + (ρ̂ sin(µ̂− µ))2

= (n−1
∑n

i=1 cos(θi − µ))2 + (n−1
∑n

i=1 sin(θi − µ))2

= X̄2
n + Ȳ 2

n .

This gives

cos(µ̂− µ) =
ρ̂ cos(µ̂− µ)

ρ̂
=

X̄n√
X̄2
n + Ȳ 2

n

.

Now

EX1 = E cos(θ1 − µ) = E(cos θ1 cosµ+ sin θ1 sinµ) = ρ cos2 µ+ ρ sin2 µ = ρ,

and

EY1 = E sin(θ1 − µ)

= E(sin θ1 cosµ+ sin θ1 cosµ)

= ρ sinµ cosµ+ ρ sinµ cosµ

= ρ sin(µ− µ)

= 0,

where we have used the trigonometric identity sin(x− y) = sin x cosx− sin y cos y. So

g(µX , µY ) = g(ρ, 0) = ρ/(ρ2 + 0)1/2 = 1.

If we try the first-order delta method on
√
n(cos(µ̂ − µ) − 1) =

√
n(g(X̄n, Ȳn) − g(µX , µY )),

we run into a problem: For the function g(x, y) = x/
√
x2 + y2 we have

∂

∂x
g(x, y) =

y2

(x2 + y2)3/2

∂

∂y
g(x, y) = − xy

(x2 + y2)3/2
,
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each of which is equal to zero when we plug in (x, y) = (ρ, 0). Therefore we cannot use the
first-order delta method.

Since we cannot use the first-order delta method, we establish the result with the second-order
expansion

g(X̄n, Ȳn) ≈ g(µX , µY )+ġ(µX , µY )T
(
X̄n − µX
Ȳn − µY

)
+

1

2

(
X̄n − µX
Ȳn − µY

)T
g̈(µX , µY )

(
X̄n − µX
Ȳn − µY

)
,

where

ġ(µX , µY ) =

(
∂
∂x
g(x, y)

∂
∂y
g(x, y)

) ∣∣∣∣∣
(x,y)=(µX ,µY )

, g̈(µX , µY ) =

(
∂2

∂x2
g(x, y) ∂2

∂x∂y
g(x, y)

∂2

∂x∂y
g(x, y) ∂2

∂y2
g(x, y)

)∣∣∣∣∣
(x,y)=(µX ,µY )

.

After some more differentiation of the function g(x, y), we obtain

g̈(ρ, 0) =

[
0 0
0 −ρ−2

]
,

which, with g(ρ, 0) = 1 and ġ(ρ, 0) = 0, gives the approximation

g(X̄n, Ȳn) ≈ 1− 1

2
· (Ȳn − µY )2

2ρ2
= 1− σ2

Y

2nρ2

(√
n(Ȳn − µY )

σY

)2

,

where σ2
Y = VarY1. We now use the fact that

√
n(Ȳn − µY )/σY converges in distribution to a

Normal(0, 1) random variable, which when squared has the χ2
1 distribution we can represent

this random variable with W . Lastly, we plug in

σ2
Y = Var sin(θ − µ)

= E sin2(θ − µ)− [E sin(θ − µ)]2

=
1

2
E(1− cos(2(θ − µ))− (0)2

=
1− α2

2
,

and rearrange to obtain

n[1− cos(µ̂− µ)] ≈ 1− α2

4ρ2
·W.

(c) It can be shown that σ̂2 = [1 − n−1
∑n

i=1 cos(2(θi − µ̂))]/(4ρ̂2) is a consistent estimator of σ2.
Use this fact to argue that the interval µ̂ ± cos−1(1 − σ̂2χ2

1,α/n) will contain µ with probability
approaching 1− α as n→∞.
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We begin by writing P (n[1− cos(µ̂− µ)]/σ̂2 < χ2
1,α)→ 1− α as n→∞. Then we have

{n[1− cos(µ̂− µ)]/σ̂2 < χ2
1,α} = {cos(µ̂− µ) > 1− σ̂2

n
χ2
1,α}

= {|µ̂− µ| < cos−1(1− σ̂2

n
χ2
1,α)},

so that µ̂ will lie within cos−1(1− σ̂2

n
χ2
1,α) of µ with probability approaching 1−α as n→∞.

4. (Optional) Additional problems from CB: 5.35, 5.42
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Problems 5.18 5.30 5.36 5.44 5.51 a b from CB

5.10 Let X to so

E III FEE
a Already done in previous hw

b het R X We can show R F in two was

A Sina X to we can write

X Ey
when Z Nlo W RI and Z W

Then

R X FEI Fu

from the anatomy of an F distributed random variable

ii We can use the edf method For r o we have

PIR D P

P F EXEF

ELF EC F

So



Eli A f Kl

Kk

ü.EE

HÖHE
We recognize this cs the pdf of the Few distribution

c We have

E tun E TEE

t.FI H E I E
F

2

e

To see the above Stirling formula gives

Ant antiken



for langen so we write

im Für EEIIIIE
ä im III FEE
e im V 2I

I

where

E 5

L

a c D

ä e

d Sinn X
d Z Normal 0,1

5 z R

by a result called the continuous
mapping theorem



e het W RY and We R b independent res Then

R 8 It Ey m ti

by blutzkys theorem since

my Iti s s es peso

5.30 For lange n me have

I Tz E Normal o 25

k

PCK al E PL I s

I FIj.is
PC I TE z Nco

0.99

Er Zips quorm 995 2.576

n s E Zoo f 52.2.57 331.7

h take n 332



5.40 het X Kid Bernoulli p In n E Xi

a The central limit theorem
gives

rn in p s N o pll d as n n

since EX p and Vor X p l p

b ht g z Z 1 Z Then LC ZC it I CI Z I ZZ

he han glp pl 2 pl so the delta method gives

In Yu 1 Y pll d
D
N o 1 2 pl

provided p Ya If p L then glp so so in cannot
on the Ist_order delta method

C For ghz 2 1 z we kam g z 2

If p l Efd L IIE
k the 2nd order delta method gar

n f ru S G W where w R



For U Uni Unit o

FEELIN Lj
d
von

For n 12 we have

Flüge Ecu Eu G
i c

b Support of Ff Ui 6 is only 6 6


