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These slides are an instructional aid; their sole purpose is to display, during the lecture,
definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.
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Weak, mean square, and strong consistency

Consistency of an estimator

An estimator θ̂n of θ ∈ Θ ⊂ R is called
1 weakly consistent (W-C) if

lim
n→∞

P(|θ̂n − θ| < ε) = 1

for every ε > 0 and every θ ∈ Θ. (Same as conv. in probability, θ̂n
p−→ θ).

2 mean square consistent (MS-C) if limn→∞MSE θ̂n → 0.
3 strongly consistent (S-C) if P(limn→∞ θ̂n = θ) = 1.

W-C means θ̂n ∈ (θ − ε, θ + ε) occurs w/prob → 1 as n→∞, for any ε > 0.

S-C covered in future courses. We will focus on W-C and MS-C.

Exercise: Let X1, . . . ,Xn
ind∼ Unif(0, θ). Is X(n) a weakly consistent estimator for θ?
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Weak, mean square, and strong consistency

Theorem (Mean square consistency implies weak consistency)

An estimator θ̂n is weakly consistent for θ if it is mean square consistent for θ.

Exercise: Prove the above.

Showing lim
n→∞

MSE θ̂n = 0 can be easier than showing lim
n→∞

P(|θ̂n − θ| < ε) = 1.

To establish MS-C, and by implication, W-C, one can show

1 lim
n→∞

Var θ̂n = 0

2 lim
n→∞

Bias θ̂n = 0

The property lim
n→∞

Bias θ̂n = 0 is called asymptotic unbiasedness.
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Weak, mean square, and strong consistency

Exercise: For X1, . . . ,Xn
ind∼ Exponential(λ). Check mean square consistency of

1 λ̂n = X̄n.
2 λ̃n = nX(1).
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Weak, mean square, and strong consistency

It is possible to have weak consistency without MS-C.

Example: Let X1, . . . ,Xn
ind∼ t2, fX (x) = (1/2)(1 + x2)−3/2.

1 Since E|X1| = 1, can show X̄n is S-C for EX1, from which W-C follows.
2 However, since EX 2 does not exist, X̄n is not MS-C for EX1.
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Weak, mean square, and strong consistency

Theorem (MS consistency of moments)
For X1, . . . ,Xn iid, let τ = Eh(X1) and τ̂n = n−1∑n

i=1 h(Xi ). If Eh2(X1) <∞,
then τ̂n is mean square consistent for τ .

Since MS-C =⇒ W-C: If Eh2(X1) <∞, then τ̂n is weakly consistent for τ .

We can also show E|h(X1)| <∞ implies W-C if we use a S-C argument.

Exercise: Prove the result.
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Weak, mean square, and strong consistency

Exercise: Let X1, . . . ,Xn
ind∼ Pareto(α, β), fX (x ;α, β) = βαβx−(β+1)1(x ≥ α).

Let τ = EX k
1 and τ̂n = n−1∑n

i=1 X
k
i . When do we have τ̂n

p−→ τ?
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Weak, mean square, and strong consistency

Theorem (Helper results for establishing consistency)
1 If τ̂1,n, . . . , τ̂k,n are W-C for τ1, . . . , τk , resp., and g continuous, then

g(τ̂1,n, . . . , τ̂k,n)
p−→ g(τ1, . . . , τk).

2 If τ̂1,n, . . . , τ̂k,n are MS-C for τ1, . . . , τk , resp., and aj,n → aj and bn → b, then∑k
j=1 aj,nτ̂j,n + bn is MS-C for

∑k
j=1 ajτj + b.

Exercise: Argue that the MoMs/MLEs are W-C for the parameters:

1 X1, . . . ,Xn
ind∼ Uniform(a, b).

2 X1, . . . ,Xn
ind∼ Normal(µ, σ2).
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Consistency results for UMVUEs and MLEs

Theorem (Mean square consistency of the UMVUE)
Let X1,X2, . . . be iid and let τ̂n be the UMVUE for τ based on a sample of size n.
Then τ̂n is mean square consistent.

Exercise: Go through proof.
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Consistency results for UMVUEs and MLEs

Example: Let X1, . . . ,Xn
ind∼ Geometric(θ), θ ∈ (0, 1), τ = θ(1− θ)k−1.

Consider how to show that the following estimators of τ are MS-C or W-C:

1 The UMVUE

τ̂n =

(
Tn − k − 1

n − 2

)(
Tn − 1
n − 1

)−1

1(Tn ≥ n − 1 + k),

where Tn =
∑n

i=1 Xi .
2 The MLE τ̃n = (1/X̄n)(1− 1/X̄n)k−1.
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Consistency results for UMVUEs and MLEs

Theorem (Consistency of MLEs)

Let X1, . . . ,Xn be iid with cdf F (x ; θ) and let θ̂n be the MLE for θ. Suppose
1 the support of F (·; θ) does not depend on θ.
2 the score function exists and has finite mean.
3 the true value of θ lies in the interior of Θ.

Then θ̂n is strongly consistent for θ (implies θ̂n is W-C for θ).

A nice result since we cannot always write MLEs in closed form.

Exercise: Go through heuristics of proof.
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Newton-Raphson algorithm for computing the MLE

Newton-Raphson algorithm for computing the MLE

For data X with S(θ; X) = ∂
∂θ log f (X; θ) and H(θ; X) = ∂2

∂θ∂θT
log f (X; θ) and an

initial value θ(0) for θ̂, do

θ(1) ← θ(0) − [H(θ(0); X)]−1S(θ(0); X)

θ(0) ← θ(1)

until there is little change between θ(0) and θ(1).

Exercise: Let X1, . . . ,Xn
ind∼ F (x ;µ) = 1/(1 + e−(x−µ)), for µ ∈ R.

Write an algorithm for computing the MLE of µ.
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Newton-Raphson algorithm for computing the MLE
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Newton-Raphson algorithm for computing the MLE
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