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These slides are an instructional aid; their sole purpose is to display, during the lecture,
definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.
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Asymptotic distributions of estimators (one-dimensional
parameter)

Recall the central limit theorem and the delta method:

Theorem (Central limit theorem, cf. Thm 5.5.15 in CB)
For X1, . . . ,Xn iid, τ̂n = n−1∑n

i=1 h(Xi ), τ = Eh(X1), with ϑ = Var h(X1) <∞,
we have √

n(τ̂n − τ)
D−→ Normal(0, ϑ)

as n→∞.

Theorem (Delta method, cf. Thm 5.5.24 in CB)

If
√
n(θ̂n − θ)

D−→ Normal(0, σ2) as n→∞, then

√
n(g(θ̂n)− g(θ))

D−→ Normal(0, [g ′(θ)]2σ2)

as n→∞, provided g ′(θ) exists and is not 0.

The variance in a limiting Normal distribution is called the asymptotic variance.
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Asymptotic distributions of estimators (one-dimensional
parameter)

Corollary (Asymptotic distribution of kth moment)
Let X1, . . . ,Xn be iid with m2k = EX 2k

1 <∞ and let m̂k = n−1∑n
i=1 X

k
i and

mk = EX k
1 . Then

√
n(m̂k −mk)

D−→ Normal(0,m2k −m2
k)

as n→∞.

Apply CLT in prev. slide with h(x) = xk , noting that VarX k
1 = EX 2k

1 − (EX k
1 )2.

Exercise: Let X1, . . . ,Xn
ind∼ Gamma(α, β). Give the asympt. behavior of m̂2.
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Asymptotic distributions of estimators (one-dimensional
parameter)

Asymptotic behavior of sample quantiles
Let X1, . . . ,Xn be iid with cont. pdf f and pth quantile qp. Set q̂np = X(dnpe).
Then

√
n(q̂np − qp)

D−→ Normal
(
0,

p(1− p)

[f (qp)]2

)
as n→∞, provided f (qp) > 0.

Exercise: Give heuristics of proof.
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Asymptotic distributions of estimators (one-dimensional
parameter)

Exercise: Let X1, . . . ,Xn
ind∼ f (x ; θ) = 1

2λe
−|x−µ|/λ with µ ∈ R and λ > 0.

Give the asymptotic behavior of
√
n(q̂n,0.5 − q0.5) as n→∞.
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Asymptotic distributions of estimators (one-dimensional
parameter)

Theorem (Asymptotic distribution of the MLE)

Let X1, . . . ,Xn be iid with cdf F (x ; θ) and let θ̂n be the MLE for θ. Suppose
1 the support of F (·; θ) does not depend on θ.
2 the score function exists and has finite mean.
3 the true value of θ lies in the interior of Θ.
4 conditions (A5) and (A6) from pg. 516 in CB hold.

Then, for a continuous function τ , provided τ ′(θ) exists and is not zero, we have

√
n(τ(θ̂n)− τ(θ))

D−→ Normal

(
0,

[τ ′(θ)]2

I1(θ)

)
,

as n→∞, where I1(θ) = Varθ
(
∂
∂θ log f (X1; θ)

)
is the Fisher inf based on n = 1.

Can interpret I1(θ) as the expected curvature of `(θ;X1) at θ.

The MLE achieves, asymptotically, the CRLB for unbiased estimators of τ(θ).

Discuss: Heuristics of proof.
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Asymptotic distributions of estimators (one-dimensional
parameter)

Exercise: Let X1, . . . ,Xn
ind∼ Gamma(θ, 1).

Give the asymptotic variance of
√
n(log θ̂n − log θ), where θ̂n is the MLE of θ.
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Asymptotic distributions of estimators (one-dimensional
parameter)

Asymptotic relative efficiency, cf. Defn 10.1.16 of CB
If two estimators Wn and Vn satisfy

√
n(Wn − τ(θ))

D−→ Normal(0, σ2
W )

√
n(Vn − τ(θ))

D−→ Normal(0, σ2
V ) as n→∞,

then the asymptotic relative efficiency of Vn with respect to Wn is defined as

ARE(Vn;Wn) = σ2
W /σ

2
V .

Exercise: Let X1, . . . ,Xn be iid with density given by

f (x ; b) =
( a
b

)(x
b

)a−1
exp

[
−
(x
b

)a]
1(x > 0),

for some b > 0, with a > 0 known. Find ARE of the MoM vs ML estimators of b.
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Asymptotic distributions of estimators (one-dimensional
parameter)
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Asymptotic distributions of estimators (one-dimensional
parameter)

Limiting efficiency, cf. Defn 10.1.11 of CB
Let τ̂n be a consistent estimator of τ = τ(θ) and suppose the CR condition holds.
Then the limiting efficiency of τ̂n is defined as

Leff τ̂n = lim
n→∞

[ ∂∂θ τ(θ)]2/In(θ)

Var τ̂n

Moreover, τn is called asymptotically efficient if its limiting efficiency is equal to 1.

Limit of CRLB for unbiased estimators over the variance of the estimator.

Exercise: Find the limiting eff. of the MoM estimator of θ in Gamma(θ, 1).
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Multidimensional results

Theorem (Asymptotic joint distribution of moments)

Let X1, . . . ,Xn be iid and let m̂j = n−1∑n
i=1 X

j
i and mj = EX j

1 for j = 1, 2, . . .
Set m̂ = (m̂1, . . . , m̂k)T and m = (m1, . . . ,mk)T and assume m2k <∞. Then

n1/2(m̂−m)
D−→ Normal(0,M)

as n→∞, where Mij = mi+j −mimj for 1 ≤ i , j ≤ k .

Theorem (Multivariate delta method)

Let
√
n(Yn − θ)

D−→ Normal(0,Σ) as n→∞. Then

√
n[g(Yn)− g(θ)]

D−→ Normal
(
0, [∇g(θ)]TΣ [∇g(θ)]

)
as n→∞,

provided ∇g(θ) exists and is not equal to zero.

Exercise: For X1, . . . ,Xn with m4 <∞, give asymptotic behavior of√
n(σ̂2

n − σ2), where σ2 = m2 −m2
1 and σ̂2

n = m̂2 − m̂2
1.
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Multidimensional results

Theorem (Asymptotic distribution of the MLE, multidimensional θ)

Let X1, . . . ,Xn
ind∼ F (x ; θ) and let θ̂n be the MLE for θ ∈ Θ ⊂ Rd . Suppose

1 the support of F (·; θ) does not depend on θ.
2 the score function exists and has finite mean.
3 the true value of θ lies in the interior of Θ.
4 conditions (A5) and (A6) from pg. 516 in CB hold.

Then, for a continuous function τ , provided ∇τ(θ) exists and is not zero, we have

√
n(τ(θ̂n)− τ(θ))

D−→ Normal
(
0, [∇τ(θ)]T I−1

1 (θ)[∇τ(θ)]
)
,

as n→∞, where I1(θ) = Eθ[S(θ;X1)S(θ;X1)T ] is the Fisher inf based on n = 1.

From now on we will call conditions 1–4 above the MLE regularity conditions.
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Multidimensional results

Exercise: Let X1, . . . ,Xn
ind∼ FX (x ; a, b) = 1− exp(−(x/b)a), x > 0, a, b > 0.

Show the following:

1 I1(a, b) =

[
1.824/a2 −0.423/b
−0.423/b a2/b2

]
.

2 ARE(q̂n,0.5; τ̂n) = 0.663 where τ̂n is the MLE of the median.
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