# STAT 713 sp 2023 Lec 10 slides

# Tests of hypotheses, size, power, and p-values

Karl B. Gregory

University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture, definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.

Consider a parameter of interest  $\theta \in \Theta$ .

#### Null and alternate hypotheses

Consider null and alternative hypotheses  $H_0$  and  $H_1$  of the form

$$H_0$$
:  $\theta \in \Theta_0$  versus  $H_1$ :  $\theta \in \Theta_1$ ,

where  $\Theta_1 \cap \Theta_0 = \emptyset$  and  $\Theta_0 \cup \Theta_1 = \Theta$ .

Call  $\Theta_0$  the *null space* and  $\Theta_1$  the *alternate space*.

A statistical inference is a decision, based on the data, to

- reject  $H_0$  and conclude that  $H_1$  is true.
- $\bigcirc$  not reject  $H_0$  and conclude nothing.

#### Examples:

- For  $p \in (0,1)$ , might test  $H_0$ : p = 1/2 versus  $H_1$ :  $p \neq 1/2$ .
- For  $\mu \in (0, \infty)$ , might test  $H_0$ :  $\mu \leq 2$  versus  $H_1$ :  $\mu > 2$ .
- For  $\delta \in (-\infty, \infty)$ , might test  $H_0$ :  $\delta = 0$  versus  $H_1$ :  $\delta \neq 0$ .

Identify  $\Theta$ ,  $\Theta_0$ , and  $\Theta_1$  for the above examples.

#### Simple and composite hypotheses

- Simple hypotheses specify a single value for a parameter.
- Composite hypotheses specify multiple possible values for a parameter.

# Hypothesis test/test of hypotheses

A *hypothesis test* is a rule for deciding whether or not to reject  $H_0$  based on data.

Given data X and hyps.  $H_0$  and  $H_1$ , tests of hypotheses take the form

Reject 
$$H_0$$
 iff  $T(\mathbf{X}) \in \mathcal{R}$ .

The function T(X) of the data is called the *test statistic*.

The set R is called the *rejection region*.

#### A test as a binary function

We sometimes express a test as a function  $\phi(\mathbf{X}) = \mathbf{1}(T(\mathbf{X}) \in \mathcal{R})$ . Then

$$\phi(\mathbf{X}) = 1 \implies \text{Reject } H_0$$

$$\phi(\mathbf{X}) = 0 \implies \text{Fail to reject } H_0$$

## Type I and Type II errors

- A Type I error is rejecting  $H_0$  when  $H_0$  is true
- A Type II error is failing to reject  $H_0$  when  $H_0$  is false.

Make table...

#### Power function, size, and level of a test

Consider a test of  $H_0$ :  $\theta \in \Theta_0$  vs  $H_1$ :  $\theta \in \Theta_1$  which rejects  $H_0$  when  $T(\mathbf{X}) \in \mathcal{R}$ .

The power function of the test is given by

$$\gamma(\theta) = P(\text{Reject } H_0 \text{ when true value of parameter is } \theta) = P_{\theta}(T(\mathbf{X}) \in \mathcal{R}).$$

2 The size of the test is

$$\sup_{\theta \in \Theta_0} \gamma(\theta) = \text{maximum probability of a Type I error}$$

**1** The test is said to have *level*  $\alpha$  if its size is no greater than  $\alpha$ .

**Discuss:** Interpretations of  $\gamma(\theta)$  for  $\theta \in \Theta, \Theta_0, \Theta_1$ .

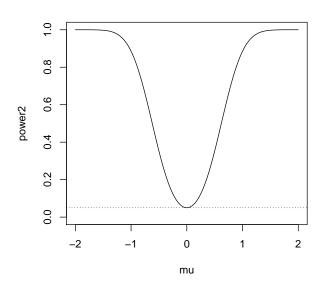


**Exercise:** Let  $X_1, \ldots, X_n \stackrel{\text{ind}}{\sim} \text{Normal}(\mu, \sigma^2)$ ,  $\mu \in (-\infty, \infty)$  unknown, and

$$H_0$$
:  $\mu = \mu_0$  versus  $H_1$ :  $\mu \neq \mu_0$ .

Consider the test  $\phi(\mathbf{X}) = 1 \iff \sqrt{n}|\bar{X}_n - \mu_0|/\sigma > z_{\alpha/2}$ , for some  $\alpha \in (0,1)$ .

- Find an expression for the power function.
- Calculate the size of the test.
- ① Make a plot of the power function under  $\alpha=0.05$ ,  $\sigma=1$ ,  $\mu_0=0$ , and n=10.



**Exercise:** Let  $Y \sim \text{Binomial}(n, p)$ . Test  $H_0$ :  $p \leq p_0$  vs  $H_1$ :  $p > p_0$  with the decision rule  $Y > B_{n,p_0,\alpha}$ , where  $B_{n,p,\alpha} = \inf\{y : P_p(Y \leq y) \geq 1 - \alpha\}$ .

- Give an expression for the power function of the test.
- Give an expression for the size of the test.
- **3** Argue that the test has level  $\alpha$  for any  $p_0$ , n, and  $\alpha$ .
- Plot power function and give size when  $\alpha = 0.05$ ,  $p_0 = 1/2$ , and n = 20.

All rejection rules can be written as T(X) > c for some T(X) and c.

# Theorem (Calibrating the rejection region to control the level)

We may define a level- $\alpha$  test by the rejection rule  $T(X) > c_{\alpha}$ , where

$$c_{\alpha} = \inf \left\{ c : \sup_{\theta \in \Theta_{\mathbf{0}}} P_{\theta}(T(\mathbf{X}) > c) \leq \alpha \right\}.$$

If T(X) is continuous for all  $\theta$  then the test has size  $\alpha$ .

**Exercise:** Let  $X_1, \ldots, X_n \stackrel{\text{ind}}{\sim} \text{Exponential}(\lambda)$ ,  $\lambda \in (0, \infty)$  unknown, and

$$H_0$$
:  $\lambda \leq 2$  versus  $H_1$ :  $\lambda > 2$ .

Consider the test with rejection rule  $\bar{X}_n > c$ .

- Find the value c such that the test has size  $\alpha = 0.05$ .
- ② Give the power function under this choice of c.

The power function helps with sample size calculations.

# Sample size calculation

For testing  $H_0$ :  $\theta \in \Theta_0$  vs  $H_1$ :  $\theta \in \Theta_1$ , ask:

- What is a meaningful alternative (meaningful non-nullity)? Choose  $\theta_1 \in \Theta_1$ .
- **②** With what probability do you want to reject  $H_0$ ? Choose  $\gamma^* \in (0,1)$ .

Suppose your test has power function  $\gamma_n(\theta)$  under the sample size n.

Then find the smallest n such that  $\gamma_n(\theta_1) \geq \gamma^*$ .

**Exercise:** Let  $X_1, \ldots, X_n \stackrel{\text{ind}}{\sim} \text{Normal}(\mu, 4)$ . Reject  $H_0: \mu \geq 500$  if

$$\sqrt{n}(\bar{X}_n - 500)/2 < -z_{0.05}$$

Find *n* required to reject  $H_0$  with probability at least 0.80 for any  $\mu \leq 499$ .

## The p-value or observed significance level

For a test of  $H_0$ :  $\theta \in \Theta_0$  vs  $H_1$ :  $\theta \in \Theta_1$  with rej. rule T > c, define the function

$$p(t) = \sup_{\theta \in \Theta_0} P_{\theta}(T \ge t) = \text{size of test with rejection rule } T \ge t.$$

Then p(T) is the *p-value* corresponding to the test statistic value T.

**Exercise:** Let 
$$X_1, \ldots, X_n \stackrel{\text{ind}}{\sim} \text{Normal}(\mu, \sigma^2)$$
. Reject  $H_0$ :  $\mu = \mu_0$  if

$$|\sqrt{n}(\bar{X}_n - \mu_0)/\sigma| > c$$
 for some  $c > 0$ .

Give the formula for computing the p-value based on some observed data.

### Theorem (The p-value as a test statistic)

If p(T) is a p-value for testing  $H_0$ :  $\theta \in \Theta_0$  vs  $H_1$ :  $\theta \in \Theta_1$ , then

$$P_{\theta}(p(T) \leq \alpha) \leq \alpha$$
 for all  $\alpha \in (0,1)$  and all  $\theta \in \Theta_0$ .

#### **Therefore**

- $p(T) \le \alpha$  gives an  $\alpha$ -level test.
- ② If T is continuous the test has size  $\alpha$  and  $p(T) \sim Uniform(0,1)$ .

Exercise: Go through proof.